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Abstract
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Investment decision making is already difficult for any 
diverse group of actors with different priorities and views. 
But the presence of deep uncertainties linked to climate 
change and other future conditions further challenges 
decision making by questioning the robustness of all 
purportedly optimal solutions. While decision makers 
can continue to use the decision metrics they have 
used in the past (such as net present value), alternative 
methodologies can improve decision processes, especially 
those that lead with analysis and end in agreement on 
decisions. Such “Agree-on-Decision” methods start by 
stress-testing options under a wide range of plausible 
conditions, without requiring us to agree ex ante on 
which conditions are more or less likely, and against a 
set of objectives or success metrics, without requiring 
us to agree ex ante on how to aggregate or weight 
them. As a result, these methods are easier to apply 

This paper is a product of the Office of the Chief Economist, Climate Change Group. It is part of a larger effort by the 
World Bank to provide open access to its research and make a contribution to development policy discussions around the 
world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The authors may be 
contacted at shallegatte@worldbank.org.  

to contexts of large uncertainty or disagreement on 
values and objectives. This inverted process promotes 
consensus around better decisions and can help in 
managing uncertainty. Analyses performed in this way 
let decision makers make the decision and inform them 
on (1) the conditions under which an option or project 
is vulnerable; (2) the tradeoffs between robustness 
and cost, or between various objectives; and (3) the 
flexibility of various options to respond to changes in 
the future. In doing so, they put decision makers back 
in the driver’s seat. A growing set of case studies shows 
that these methods can be applied in real-world contexts 
and do not need to be more costly or complicated than 
traditional approaches. Finally, while this paper focuses 
on climate change, a better treatment of uncertainties and 
disagreement would in general improve decision making 
and development outcomes.
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A. INTRODUCTION 

1. Many investment and policy decisions have long-term consequences. Infrastructure like power 
plants, roads, and dams often last for decades and need to be useful throughout their lifetimes. They 
will shape and be shaped by the future. These investments can shape development well beyond their 
lifetimes, sometimes for centuries, because the long-term socioeconomic system reorganizes itself 
around those changes. The effect of transport infrastructure on urban forms and economic activities 
can for example be observed over very long timeframes, sometimes even after the infrastructure has 
become obsolete (Gusdorf, Hallegatte, and Lahellec 2008; Bleakley and Lin 2010). Policies such as 
urbanization plans, risk management strategies, and building codes and norms can influence 
development for equally long. Therefore, to make sound plans we must consider the performance of 
our investments and decisions in the near and long term.  

2. Yet deep uncertainty about the future exacerbates the challenge of sound decision making. 
Developing countries in particular have experienced unprecedented changes in their political 
economy, land use, demographics, and natural environment. Yet, as Box 1 illustrates, past evidence 
and current research suggests that our ability to predict the future is limited at best (Silver 2012; 
Kahneman 2011; Taleb 2007). Compounding the problem, parties to a decision often have competing 
priorities, beliefs, and preferences. These conditions lead to deep uncertainty. Deep uncertainty 
occurs when parties to a decision do not know or cannot agree on (1) models that relate the key forces 
that shape the future, (2) probability distributions of key variables and parameters in these models, 
and/or (3) the value of alternative outcomes (R. J. Lempert, Popper, and Bankes 2003). In his seminal 
1921 paper, Knight offered a similar definition, distinguishing between two kinds of ignorance about 
our uncertain future – that which we can reliably quantify (called Knightian risk) and that which we 
cannot (Knightian uncertainty, which corresponds to deep uncertainty). For example, the likelihood 
of experiencing a car crash is easily calculable from ample historical data and is an example of 
Knightian risk. In contrast, likelihood estimates of long-term land use patterns or global economic 
growth would be neither reliable nor verifiable. They are Knightian uncertainties or deep 
uncertainties. 

3. The impact of climate change looms large as a deep uncertainty with global consequences 
(World Bank 2009; IPCC 2014). There is scientific consensus that the planet is warming due to 
greenhouse gas emissions. This may bring radical changes in climate, with tremendous implications 
for the long-term success of near-term decisions in nearly all sectors. Yet, as Box 2 shows, there is 
deep uncertainty and disagreement among both scientists and policy makers about what the future 
climate will be in a particular region and the specific effects that climate change will have on different 
sectors and groups. Continued efforts by climate scientists and others to increase knowledge about the 
climate and future climate scenarios are valuable. However, uncertainties about climate change and 
its impacts may increase as scientific inquiry diversifies and deepens (Hallegatte 2009). Therefore, 
decision makers should accept the irreducible uncertainty about the future climate and formulate 
adaptation and mitigation policies to manage it.  

4. Failing to manage climate and other uncertainties will have serious consequences for 
adaptation. At the very least it can result in inefficient and ineffective investments. At its worst, it 
can be maladaptive, hindering effective interventions and leading to social and economic outcomes 
that are worse than if the interventions had never taken place. Inefficiency may arise from under-
adaptation to climate change, i.e., if an intervention fails to consider future climate conditions or does 
not consider the full range of possible conditions, exposing the population and economy to adverse 
impacts. Inefficiency may also arise from over-adaptation, i.e. if an intervention turns out to be 
unnecessary. Construction of a dike provides a simple example of each, since the dike could prove to 
be either too low (under-adaptation) or too high (over-adaptation). Interventions can also lead to 
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maladaptation, where the intervention subsequently leads to responses that increase vulnerability to 
climate threats. For instance, building dikes may encourage settlement and investment in the 
protected area, potentially exposing people to high flood risk if sea level rise is higher than expected 
and increases in the dike height are not or cannot be undertaken.  

5. Failure to manage deep uncertainties and competing beliefs can also hinder much-needed 
mitigation efforts. Deep uncertainties exist about how much we should mitigate CO2 emissions and 
at what cost, the effectiveness of different policies, and the availability of future technologies. Indeed, 
many who are reluctant to address climate change have cited uncertainty as a reason to postpone 
action. There is an urgent need for methods to manage deep uncertainty and reach sound adaptation 
and mitigation decisions. 

6. In this paper, we seek to help decision makers better manage uncertainty and disagreement, 
particularly around climate change, by guiding them to the right decision making processes. 
Traditional decision processes ask us to first reduce uncertainty by agreeing on assumptions about 
current and future conditions, and then analyze our decision options. When faced with disagreement 
and uncertainty, these traditional “Agree-on-Assumptions” processes lack transparency, are 
vulnerable to bias and gridlock, and lead us to brittle decisions – those that perform poorly when the 
future diverges from our projections. We can instead invert these steps, deferring on agreement until 
we have analyzed the options under many different assumptions. This inverted “Agree-on-Decisions” 
process promotes consensus around robust decisions and can help manage uncertainty and 
disagreement around climate change and other conditions. While some decision-making 
methodologies assume that the analysts or experts will provide the “best” solution to the decision-
maker, agree-on-decisions methodologies usually build on participatory processes and close 
interactions between experts and decision-makers. As such, they aim to “assist the decision maker to 
evaluate options, to develop strategies, and to evoke and evolve preferences in light of the analysis of 
uncertainties” (Ben-Haim 2006). Such an approach is deemed more appropriate in the presence of 
deep uncertainty, and ensure that decisions are legitimate (Renn 2008; World Bank 2013). 

7. By making decisions with “inverted” processes that analyze options first and seek agreement 
second, we can  

• Generate buy-in by including diverse beliefs and making analyses more transparent; 
• Identify strategies that are robust, performing well no matter what the future brings; 
• Focus decision makers’ attention on the tradeoffs between decision options; 
• Seek agreement where it matters most: on actions, rather than on assumptions; 
• Inform the decision while making sure that decision-makers – not experts and analysts – make the 

decision. 

8. The rest of this paper is divided into four sections, B through E. In Section B, we briefly 
distinguish between decision metrics and decision processes, and we posit that they should be 
considered separately given that any decision process can be used with any decision metric. Section C 
then focuses “Agree-on-Assumptions” processes while Section D presents “Agree-on-Decisions” 
processes. In the latter, we review features of robust decisions around which decision makers can 
reach consensus and offer three real-world applications. We conclude in Section E. The paper also 
offers an introduction to climate uncertainty in Appendix 1.    
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Box 1. The difficulty of predicting a deeply uncertain future 

Analysts and decision makers struggle to make accurate predictions of the future. The figure to the left 
shows projections made in the 1970’s for future US primary energy use to 2000. The projections were 
based on a century of data (black data points) that suggested a direct linear relationship (solid orange line) 

between gross national product (GNP) and 
energy consumption. The projections 
extrapolated this relationship and included 
some uncertainty (dashed orange lines), 
but nearly all of them were wrong. They 
significantly overestimated actual US 
energy use (dashed red line) because they 
could not anticipate the 1973 oil shock 
which triggered innovation and behavioral 
and policy changes that led to large 
increases in energy efficiency (Craig, 
Gadgil, and Koomey 2002).  

Source: Adapted from (Craig, Gadgil, and Koomey 2002) 

The figure to the right offers an example of the difficulty of predicting even near-term outcomes, and the 
tendency to be overconfident in those 
predictions. Each year, the U.S. Federal 
Reserve conducts the Survey of 
Professional Forecasters, asking 
economists to project the next year’s 
change in GDP. These projections are 
given as 90% confidence intervals, 
shown as vertical black lines. In the 18 
years from 1993 to 2010, the actual 
GDP was within this confidence 
interval in twelve years (green circles) 
and outside this confidence interval (red 
x’s) in six years – three times as often 
as it should have been if the projections 
offered a true 90% confidence interval 
(Silver 2012). 

 

Source: Adapted from (Silver 2012) 
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Box 2. Uncertainty in climate change projections 

A cascade of uncertainties plagues climate change, and these uncertainties preclude prediction of the 
precise nature, timing, frequency, intensity and location of climate change impacts. The chain of 
increasing uncertainty begins with assumptions about the socio-economic characteristics of the global 
population, which determine the specification of a range of possible emissions scenarios. Estimates of 
climatic effects depend not only on the scenarios chosen but also on the configuration of the climate 
model used and existing knowledge of biophysical responses. Additionally, the farther into the future our 
projections, the greater the uncertainty. Uncertainty is also compounded by geographical resolution: 
uncertainty increases as the resolution of effects (i.e., downscaling) increases, from regional to country to 
local impacts (Gay and Estrada 2010). Even climate experts are unlikely to agree on a prediction of 
specific impacts of climate change (Arnell, Tompkins, and Adger 2005). Many go even further in 
rejecting the specification of probabilities for climate change impacts because of the lack of repeated 
experiments, lack of independent observations, and the fact that all probabilities are conditional on a 
multitude of socio-economic and other developments. 

The figure below shows the 25th, 50th (median), and 75th percentile of projections of precipitation in 
Africa in 2080-2100, compared with 1986-2005 average, using the CMIP5 climate models of the last 
IPCC report (IPCC 2013) . Some projections show substantially wetter climates while others show 
substantially drier climates for the same region. Uncertainty in future sea level rise, temperature, 
precipitation and other climate factors has tremendous implications for policymakers’ near term choices – 
where to locate key infrastructure such as airports, how to protect coastal areas from flooding, how to 
ensure water security, and so forth. 

 

Maps of precipitation changes in 2016–2035, 2046–2065 and 2081–2100 with respect to 1986–2005 in the RCP4.5 scenario. For each point, the 
25th, 50th and 75th percentiles of the distribution of the CMIP5 ensemble are shown; this includes both natural variability and inter-model 
spread. Hatching denotes areas where the 20-year mean differences of the percentiles are less than the standard deviation of model-estimated 
present-day natural variability of 20-year mean differences. 

Source: (IPCC 2013)  
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B. DECISION AND METRICS AND DECISION PROCESSES 

9. We begin by making a distinction between decision metrics and decision processes. Often, when 
we speak of approaches to decision making we are simultaneously referring to two distinct 
components of approaches:  

a. The performance metric we use to differentiate between different decision options, and  
b. The process we use to evaluate each option according to that performance metric and to come 

to a decision.  

Consider, for example, a choice between investing in mobile clinics or centralized clinics to provide 
vaccines to children as cheaply as possible. We might use a metric of cost per vaccination delivered 
to measure how well each option meets our objective. We can use different processes to assess each 
option according to this metric. We might first make assumptions about the geographic distribution of 
people in the region, their costs of traveling to different locations, the safety of different routes, and 
other conditions relevant to our choice. Based on these assumptions, we could calculate how many 
vaccinations each approach could deliver and the cost of each option, from which we could calculate 
our cost per vaccine. We would choose the least-cost approach, and use a sensitivity analysis to 
identify the main assumptions that drive our conclusion. We could instead use a different process 
while still using the metric of costs-per-vaccine. For instance, we might start by evaluating each 
option against a wide range of potential conditions and then choose the one that has the lower cost per 
vaccine across the widest range of conditions.  

10. Treating metrics and processes separately allows us to choose the right tools for a decision. 
Metrics and processes have distinct strengths and weaknesses. Cost effectiveness metrics like the cost 
per vaccine can be valuable when it is difficult or impossible to monetize the benefit (such as lives 
saved) or when our options have the same main result (such as delivering vaccines). This is a 
characteristic of the metric and not of the process. On the other hand, one might criticize the above 
steps as too sensitive to the assumptions about geographic distribution and travel costs, particularly 
when there are large data gaps. This is a characteristic of the process, and not of the metric. In this 
paper, we focus the discussion on the processes used to evaluate and prioritize investments and 
policies and we investigate two types of processes: Agree-on-Assumptions processes and Agree-on-
Decision processes.  

C. AGREE-ON-ASSUMPTIONS PROCESSES  

11. One approach, which is consistent with most traditional decision processes, is to first reduce 
uncertainty by agreeing on assumptions about the current and future conditions and second 
analyze our decision options. The first step in many analyses, regardless of the metric, is to define 
the assumptions – about the present and the future – under which our investments must perform. This 
can be a single estimate of the future, as in our vaccine example, or a probability distribution. We 
then analyze our options, choosing the one that performs best under our assumptions. As one 
example, urban planners making flood risk investments would first characterize the future urban 
form, sea level rise, and other factors. They would second evaluate the risk reduction benefits (the 
metric) of their investment options (e.g. constructing dikes) under these assumptions. We might 
perform a sensitivity analysis to assess how much influence each assumption has on the outcome. 
Such approaches have also been termed “predict-then-act” (R. J. Lempert, Popper, et al. 2013) or 
“science first” (Dessai and Hulme 2007). 

12. When faced with disagreement and deep uncertainty, these traditional “Agree-on-
Assumptions” processes are vulnerable to bias and gridlock. First, many important assumptions 
are buried in models, rather than in front of decision makers. This makes it difficult for decision 
makers to understand and assess potentially critical assumptions on which their investment decisions 
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hinge. Second, many factors are difficult, if not impossible, to predict. Stakeholders also know that 
the choice of assumptions drives the choice of investment option. They may press for assumptions 
that will lead to the options they already favor, making consensus difficult (R. J. Lempert, Popper, 
and Bankes 2003). We risk losing stakeholders’ buy-in early if the foundations of the decision 
process lack transparency, appear arbitrary, or do not include their beliefs.  

13. Agree-on-Assumptions approaches are vulnerable to reaching brittle decisions – ones that are 
optimal for a particular set of assumptions, but which perform poorly or even disastrously 
under other assumptions. Sensitivity analyses are often not sufficient for exploring the full range of 
plausible assumptions and future conditions (Bonzanigo and Kalra 2014), and Agree-on-Assumptions 
create little opportunity for exploring the performance of our decision options under unexpected 
conditions. They yield no information about how our “optimal” solution performs if the future 
surprises us, and they do not guide us to solutions that might work well if the predicted future does 
not come to pass. Yet, there is a great need for understanding the effect of surprises and unexpected 
conditions: repeated studies have shown, human beings have a widespread tendency towards over-
confidence, believing strongly in our ability to predict the future when we cannot (Kahneman 2011). 
The following case example of cost-benefit analysis illustrates these shortcomings.  

COST-BENEFIT ANALYSIS AND FLOOD RISK MANAGEMENT 

14. Cost-benefit analysis is one of the most widely used methodologies to inform investment 
decision-making. In this methodology, all the costs and benefits of an investment are aggregated into 
a monetary value in present terms. That is, the methodology (1) calculates the value of each monetary 
consequence (e.g., a flux of revenues from the project) and non-monetary consequence (e.g., lives 
that are saved by the investment, the impact of ecosystems and biodiversity, loss of cultural heritage) 
over time and (2) translates the future costs and benefits into a “present value” using a discount rate. 
Costs and benefits can be transformed into a single metric such as the benefit-cost ratio (the ratio of 
benefits to costs which, if larger than one, indicates the investment is desirable) or the net present 
value of the project (difference between the benefits and the costs which, if larger than 0, indicates the 
investment is desirable). Investments can be ranked according to these metrics to guide the selection 
of those that are expected to generate the greatest benefit overall. Cost benefit analysis has a long 
pedigree and has been honed and refined over many years. It is widely used in the economic analysis 
for World Bank projects (Tan et al. 2001). For more details, see Boardman et al. (2011).  

15. Cost-benefit analysis, as traditionally practiced, is an example of an Agree-on- Assumptions process 
since it can only be applied if stakeholders agree on how to quantify various impacts (i.e., agree on 
how to attribute a monetary value to non-monetary consequences such as lives saved) and how to 
aggregate impacts at different points in time (i.e., agree on the discount rate). If all stakeholders agree 
on these assumptions, then the methodology provides an unambiguous answer regarding the 
desirability of an investment and a clear ranking of investment alternatives.  

16. Consider the decision of whether to build infrastructure to protect New Orleans against 
category 5 hurricanes based on a cost-benefit metric. We might ask, “Is the net present value of 
such an investment positive?” The answer depends on many assumptions about the cost of 
construction, the probability of a category 5 hurricane losses that would occur in the event of a 
hurricane, and discount rates. In a traditional approach, we might start by estimating these values. 
Engineers estimate that it will cost $20 billion to build and operate the protection system. The benefits 
can be can be estimated as a discounted sum of the benefits (i.e. the avoided losses), over the lifetime 
of the protection (Hallegatte 2006): 
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where 

• T is the lifetime of the protection; 

• pn is the annual probability that a Category 5 hurricane hits New Orleans, which is estimated 
at about 1/500; 

• δ is the a discount rate, for which US regulations require assuming two values -- 3 and 
7 percent – in two different calculations. 

• dn is an estimate of the annual direct cost of the New Orleans flooding, estimated at 
approximately $20 billion in damages and $5 billion in human losses; 

Under these assumptions, the expected present benefit of a category 5 flood protection system in New 
Orleans can be calculated at $1.3 billion with a 7 percent discount rate and $6 billion with a 3 percent 
discount rate. This results in a net present value of -$18.3 billion or -$14 billion, respectively. This 
rough estimate would rule out the development of a system that protects against category 5 storms.  

17. There is no scientific agreement or political consensus on the assumptions upon which this 
conclusion rests. In general, nearly all parameters in a cost benefit analysis of long-term investments 
are deeply uncertain. In the above example, this includes: 

• Discount rate. As illustrated by our comparison of 3 and 7 percent discount rates, the influence of 
this political choice is large. Since this choice is very controversial and depends on ethical 
judgment on which it is difficult to reach consensus, the assessment of the system’s benefit will 
remain very uncertain and controversial.  

• Probability of occurrence. Suppose climate change and subsidence result in a five-fold increase in 
the probability of the floods currently caused by category 5 hurricanes over the 21st century, an 
increase that is within the bounds of current estimates. Then expected benefits from protection 
against category 5 hurricanes would increase from $1.3 to $2.4 billion or from $6 to $23 billion, 
using a discount rate of 7 percent and 3 percent, respectively. In the former case, the system 
would have a negative NPV and remain inadvisable, while in the latter it would have a positive 
NPV and become justifiable. 

• Flood damages. Flood damages evaluated by insurance companies are poor proxies of welfare 
costs, especially for large-scale events (Hallegatte 2014). A conservative estimate of the actual 
overall cost of the New Orleans floods is at least $60 billion, three times the insurers’ 
approximation based on direct losses only. Using the new values of event probability and 
potential damages, the expected benefit of an upgraded protection system would be $4.8 billion 
with a 7 percent discount rate and $46 billion with a 3 percent discount rate. 

• Countervailing risks and side effects. The implementation of a large-scale protection system can 
attract more people in at-risk location and increase exposure to floods if the defense fails. But it 
can also attract more activities, improve infrastructure, and create jobs and income, thus 
improving welfare more than an analysis of direct costs only would suggest. The above equation 
assumes countervailing risks and side effects do not exist, but in reality they can have significant 
though uncertain implications. These effects are very difficult to estimate and can easily double 
(or halve) expected benefits, making benefits in the above example range from $0.6 billion 
(roughly half of 1.3 billion) to $92 billion (twice $46 billion). 

• Risk aversion. The above equation also assumes that society is risk-neutral. A risk-neutral agent 
weighs positive and negative risk equally and is not affected by the degree of risk. For example, a 
risk neutral agent would not see any difference between losing $1 with certainty and having a 10 
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percent chance of losing $10, because the expected loss is the same in both cases. Yet people are 
often not risk neutral, e.g. preferring to pay disproportionately more to avoid large negative 
outcomes (Kahneman and Tversky 1979). Including an aversion to risk increases the benefit from 
protection.  

18. In such a situation of deep uncertainty, it is sometimes possible to assign subjective 
probabilities, i.e. beliefs on the likelihood of different possible future conditions. We could then 
evaluate the expected benefits as the probability-weighted average of the benefits in the different 
possible future conditions. For example, we may believe that by 2100 there is a P=1/3 chance that the 
category-5 hurricane remains a 1 in 500 year event, and a (1-P)=2/3 chance that it increases to 1-in-
100-year event. Then the expected benefit can be written: 

𝑩 = 𝑷�  
𝑻

𝒏=𝟎

𝒑𝒏 �
𝟏

𝟏 + 𝜹
�
𝒏
𝒅𝟎(𝟏+ 𝒈)𝒏 + (𝟏 − 𝑷) �  

𝑻

𝒏=𝟎

𝒑′𝒏 �
𝟏

𝟏 + 𝜹
�
𝒏
𝒅𝟎(𝟏 + 𝒈)𝒏 

Where  

• pn stays constant at 1/500, reflecting a state of the world in which climate change has no 
influence on hurricanes;  

• p’n increases from 1/500 to 1/100 by 2100, reflecting a state of the world in which climate 
change causes a five-fold increase in the likelihood of a category 5 hurricane landfall by the 
end of the century; 

•  d0 is the present-day damages from a category 5 hurricane landfall;  

• g is the annual economic growth, estimated at 3 percent.  

19. The problem is that – for climate change and many other deep uncertainties – we do not have a 
strong methodology to assign these subjective probabilities. The probability of a category 5 
hurricane under future climate change, for example, cannot be fully based on historical data, because 
climate change is a new process for which we have no past equivalent. Models of climate change 
share common flaws and their dispersion cannot be used to assess the real uncertainty. Moreover, 
when using probability distribution function for different outcomes, the Agree-on-Assumptions 
approach is extremely sensitive to tails of distribution function. As suggested by Weitzman (2009), 
for instance, the "optimal" policy regarding climate change mitigation is highly dependent on the low-
probability high-impact possible futures, on which knowledge is very limited and uncertainty is 
particularly large. At the extreme, Weitzman shows that if the probability distribution function has a 
"heavy tail" (i.e. decreases less than exponentially for increasing damage values), then a cost-benefit 
analysis suggests that all GHG emissions should be stopped immediately. 

REAL OPTION ANALYSIS 

20. A decision is often not strictly between “investing” and “not investing” but between “investing 
now” and “investing later.” To help make this type of decision, some have proposed to mobilize the 
“real option,” which was initially developed for financial markets (Arrow and Fisher 1974; Henry 
1974; Ha-Duong 1998; Pindyck 2001; Gollier C. and Treich N. 2003).  

21. Real-options (RO) analysis generalizes cost-benefit analysis by including the possibility of 
delaying decisions, revising them over time, or making a series of sequential decisions over time 
as more information becomes available. A real option is the ability, but not the obligation, to 
undertake a project of uncertain future benefits at a known cost. In finance, an option is the right to 
purchase an asset at a future point in time for a specific price acquired through the payment of a fee. 
The option may be realized against the payment of the balance of the agreed price, allowing the 
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option holder to make a profit if market prices for the asset rise above the price of the option. The 
option holder is not required to exercise this option and so limits losses if the market price falls below 
the price of the option to the amount of the fee paid to acquire the option.  

22. Applied to decision-making, real option values the options created and destroyed by a project, 
alongside its expected net present value. The analysis itself does not differ from a classical cost-
benefit analysis, except that the NPV includes additional consideration, namely the options created 
and destroyed by the project. The project's Extended NPV is calculated as follows: 

ENPV= Expected Net Present Value + ( Value of Options created – Value of Options Destroyed ) 

Thus an investment that has positive net benefits (exploiting existing capabilities) but fails to create 
new options may be less desirable than an investment with fewer direct benefits but which results in 
increased options (the ability to explore different opportunities later). In other words, there is a value 
in implementing a project that does not provide any benefit per se, but makes it possible to implement 
another project at a later point in time.  

23. Applications of real-option approaches are difficult because of the technical complexity of the 
analysis; however, there are a few applications to real cases. Scandizzo (2011) applied real 
options to the development of sea defenses in Campeche, Mexico. A comparison of the Extended 
NPV for building a sea wall and for restoring a mangrove forest revealed that construction of a high 
sea wall would be uneconomical for several decades. In contrast, the cost of planting and maintaining 
a bioshield represents an option premium that creates the opportunity to delay the building of an 
expensive seawall until it is required. Box 3 describes how real options are embedded into a strategic 
planning exercise for the Thames Estuary. Real options analysis also has value for understanding 
climate change mitigation options (Ha-Duong 1998). Investing in research and development on 
renewable energy may have a negative NPV if considered in isolation from other policies. But such 
investments may create new technologies that could provide large benefits in 20 years when very 
ambitious climate policies are implemented. So, an investment in renewable energy research and 
development may be desirable because it will create the option of rapid decarbonization in the future, 
not because of its own return. 

24. Real options approaches allow for a better inclusion of the time dimension in planning, 
including the option to delay and the introduction of more flexible solutions. Despite these 
strengths, traditional real-options analysis is an extension of the traditional Benefit-Cost 
analysis and remains an Agree-on-Assumptions process. Similarly to the cost-benefit analysis, it 
requires agreement on the value of future options, which may be deeply uncertain, and an agreement 
on the probability of various outcomes. When the assessment of outcome probabilities is impossible – 
at least in a consensual way – or when there is strong disagreement on values, real-option approaches 
are thus as difficult to implement as traditional cost-benefit analysis. In particular, they are vulnerable 
to the same shortcomings, including bias, gridlock, and brittle decisions. 

Box 3. Real options for planning in the Thames estuary 

The UK Treasury’s Green Book (guidance for policy, program, and project appraisal) cites the planning 
for the Thames Estuary 2100 as an application of Real Options approach to climate change. The Thames 
estuary floodplain contains 1.25 million people, about £200bn of property, and key transport and 
infrastructure assets, 16 hospitals and eight power stations. The planning process followed a five step 
approach:  

Stage 1: Assess Climate Risks. A series of sea level rise and storm surge scenarios were identified, 
including a central ‘most likely’ scenario. 
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Stage 2: Design Adaptation Options. A comprehensive range of options were identified, including 
raising river walls, adapting or building flood barriers or flood storage areas, applying resistance and 
resilience measures to buildings. These were assembled into portfolios of actions - High Level Options 
(HLOs) - which worked together to deal with differing degrees of sea level rise.  

Stage 3: Appraise Options to Address Most Likely View of Risk. All of the HLOs were subjected to 
cost-benefit analysis under the central sea level rise scenario to select the best generic option to promote 
under current knowledge of the most likely climate change outcome. 

Stage 4: Appraise Options Under Other Scenarios. Cost-benefit analysis was repeated for the different 
climate change scenarios. This demonstrates the potential weaknesses in options as interventions to deal 
with an uncertain future and highlights critical points in key variables (such as sea level rise) at which a 
different option may be preferred. 

Stage 5: Monitoring and Strategic Review. A system of monitoring of key climate change indicators 
(such as sea level rise) is put in place. Every 5-10 years the strategy will be revisited. If climate change 
happens more quickly (or slowly) than predicted, decision points may be brought forward (or delayed) as 
appropriate. At each review, the entire strategy may be reappraised in the light of new information. 

The figure below shows high-level options and pathways developed by TE2100 (on the y-axis) shown 
relative to threshold levels increase in extreme water level (on the x-axis). The teal line illustrates a 
possible ‘route’ where a decision maker would initially follow HLO 2 then switch to HLO4 if sea level 
increases faster than predicted. 

 
Source: (Reeder and Ranger 2011) 
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AGGREGATION AND CONSENSUS BUILDING IN AN AGREE-ON-ASSUMPTION FRAMEWORK 

25. As the above examples show, because Agree-on-Assumptions approaches rely on our being 
able to come to consensus on the parameters that affect a decision, they break down when there are 
ethical judgments and differing worldviews. This is particularly the case of cost-benefit analysis, which 
seeks to aggregate all categories of costs and benefits into a single metric. This encourages analysts to use 
models and relationships for which we have or can potentially produce consensus. This may mean 
ignoring or assuming away many large and hidden uncertainties for which there is little consensus or 
knowledge. Additionally, choosing the costs and benefits to include can be highly subjective and reflect 
the priorities of analysts, rather than the priorities of stakeholders. For instance, should GHG emissions be 
a factor in prioritizing new energy generation projects? Those principally concerned with providing low-
cost energy may argue that it should be given little weight or ignored, while those concerned with climate 
change may argue that it should be a key consideration.  

26. Decision makers must also ask themselves, “What evidence should we use to evaluate the 
options?” Cost benefit metrics typically use market values to set the relative importance of different 
criteria. However, analysts may judge that no market value exists or the market undervalues a good. This 
is another subjective choice around which there is much disagreement. Do the market prices for 
developing shoreline adequately reflect the value of ecosystem services that coastal habitats provide? 
Does the market price of carbon emissions adequately reflect the future impact of climate change? If not, 
analysts may use shadow prices instead of market prices. But, as Box 4 shows, this too can be 
contentious, and different preferences for discount rate and other factors may lead to different costs.  
 

Box 4. Setting the Social Cost of Carbon 

The United States has developed estimates of the Social Cost of Carbon (SCC) to analyze regulatory 
policies.  The SCC was constructed using integrated assessment models that value discounted global 
damages arising from climate change scenarios through to 2050. The selection of the discount rate 
has a significant impact, given that costs are estimated over fifty years and that costs will increase as 
more severe impacts are felt over time. The SCC is presented as a range of values with four discount 
rates, 5 percent, 3 percent, 2.5 percent and 1 percent, with 3 percent as the central estimate.  In 2010 
the SCC at the 3 percent discount rate is estimated at $21 per ton of CO2 (tCO2) (at 2007 prices) 
rising 2 to 3 percent a year in real terms.    

The United Kingdom uses a different approach and value for the SCC. The UK set an official shadow 
price for Carbon at £25 per ton of CO2 equivalent (tCO2e) in 2007 for the purposes of cost-benefit 
analysis of government policies, programs, and projects. This was based on the SCC advised by Stern 
Review, equivalent to £19/tCO2e. This is higher than the values in the US because the UK uses a 
lower discount rate and equity weighting. The shadow price was set higher than the underlying SCC 
in order to adequately reflect abatement costs that would be incurred to meet the government’s 
abatement goal (and thereby incentivize action) and in recognition of the government’s desire to be 
seen as a leader in climate change action. The SCC would increase by 2 percent a year to capture the 
rising incremental damage of each unit of carbon as temperatures rise. It would be subject to periodic 
review to assess progress towards the government’s abatement objectives and target emissions 
reductions. 

This policy was substantially revised in 2009, when the UK shifted to a target-consistent approach, 
based on estimates of the abatement costs that would be incurred to meet specific emissions reduction 
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targets laid out in the Government’s Carbon Budget. SCC would continue to be monitored but would 
no longer provide the basis for setting the carbon price because of the uncertainty surrounding SCC 
estimates (Pindyck 2013).  Two prices are now in use.  For appraising policies in sectors covered by 
the EU Emissions Trading System (ETS), estimates of future traded carbon price are used, giving a 
carbon price of £25 in 2020, with a range of £14 - £31. For appraising policies in sectors not covered 
by the EU ETS, a “non-traded price of carbon‟ will be used, based on estimates of the marginal 
abatement cost required to meet a specific emission reduction target, with a price of £60 tCO2e in 
2020, and a range of £30 - £90.  These estimates are periodically revised.  

Sources: (Wolverton et al. 2012; Price, Thornton, and Nelson 2007; UK Department of Energy & Climate 
Change 2009)  

 

27. In general, the value of costs and benefits can be deeply uncertain in the absence of readily 
available market prices or if market prices do not adequately capture value. This includes valuations 
of environmental costs and benefits and intangibles such as the well-being of persons. The benefits of 
building a sea wall, for example, are likely to be higher than the damage costs alone because of the 
suffering and inconvenience from flooding. In these cases cost-benefit analysis requires the construction 
of ‘shadow’ prices that better reflect utility. There are many different approaches to establishing shadow 
pricing, each of which may reveal a different shadow price and each of which has different strengths and 
weaknesses nearly all of which are data intensive. These include surveys, choice modeling (Bennett, Van 
Bueren, and Whitten 2004), and hedonmic price modeling (Mahan, Polasky, and Adams 2000). The 
choice of method can be controversial, particularly if the resulting shadow price has a significant impact 
on the performance of the policies or investments being considered. 

28. Choice of discount rate is particularly contentious in the context of climate change. The 
discount rate determines the viability of climate change mitigation and adaptation projects, given that 
costs are incurred in the short-term and benefits may only accrue in the distant future. High discount rates 
will discourage these investments. As with market prices, there is little agreement among economists as to 
the theoretically ‘correct’ method of setting discount rates, particularly for programs and projects that will 
generate costs and benefits over several generations. In practice, discount rates are set by the central 
finance agency as a ‘plug-in value’ for use in policy, program or program appraisal. Most developed 
countries apply much lower discount rates, mostly in the range of 3 to7 per cent, with many reducing their 
rates in recent years. Developing countries use a much higher discount rate, reflecting the higher 
opportunity cost of capital, in the range of 8 to 15 percent. Multilateral development banks follow similar 
practices with high discount rates (Zhuang et al. 2007).  

29. CBA or RO approaches often ignore the distribution of costs and benefits between different 
social groups, since those who benefit can theoretically compensate those who bear the costs. In 
practice, however, it will rarely be the case that the beneficiaries of a government project will actually 
compensate the losers. There are multiple ways of taking this into account, including through 
distributional weights (Fleurbaey and Hammond 2004; Harberger 1984; Harberger 1978). In many 
instances, it is extremely difficult to build a consensus on which distributional weights should be applied; 
and the large impact of these weights on decisions makes it even more difficult to create a consensus. 
Given the many potential perspectives on the issue of equity, it is unlikely that any particular evaluation 
tool can provide a satisfactory resolution to the problem: it is typically recommended in CBA that an 
unweighted analysis be carried out in addition to any weighting exercise. 

30. These problems suggest that we should seek to encompass the whole set of possible 
assumptions to check the robustness of our assessment of options according to whatever metric we 
have chosen. The example of New Orleans and hurricane protection shows that we can arrive at very 
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different net present values for an investment, even with reasonable parameter values. Here benefits from 
protection range from $0.6 billion to $140 billion depending on scientific assumptions (e.g., the impact of 
climate change on hurricanes) and ethical judgments and views (e.g., the aversion to risk and inequality). 
This situation is common and the Agree-on-Assumptions approach can rarely be used to make a decision 
in an objective way when uncertainty and disagreement are large. Thus, it is interesting and useful to 
explore alternative ways to approach such decisions.  

D. AGREE-ON-DECISIONS PROCESSES 

31. We can manage deep uncertainty by seeking a robust decision -- one that performs well across a 
wide range of futures, preferences, and worldviews, though it may not be optimal in any 
particular one. Consider two crops: Crop A provides steady yield in drought or excessive rain, while 
Crop B provides still greater yield under specific conditions consistent with historical precipitation, 
but fails otherwise. If we could control precipitation or could reliably predict that this year’s 
precipitation would look like the past, we would do well to plant Crop B and maximize yield. But this 
decision is likely to be brittle – we can rarely predict precipitation, and we may instead prefer to 
hedge our bets and plant Crop A if Crop B appears too vulnerable. Robustness becomes important 
when the consequences of making a wrong decision are high. If crop insurance is available to help 
protect against potentially poor yields, or if sufficient savings are available, optimizing (and coping 
with bad years) may be the best strategy. If these tools and resources are not available and the 
consequences of a few years of low yields are disastrous, then robustness becomes a priority.  

32. We can identify robust strategies by inverting the traditional steps, i.e. using Agree-on-
Decisions processes. They are sometimes also called “context-first” methods (Ranger et al. 2010). 
They start by “stress-testing” our options under a wide range of plausible conditions, without 
requiring us to decide or agree upon which conditions are more or less likely. They evaluate our 
decision options repeatedly, under many different sets of assumptions. We can evaluate our options 
under low-likelihood, but high-consequence events. We can treat as uncertain the assumptions buried 
in models. We can use every stakeholder’s beliefs about the future – we don’t need to agree first on 
these assumptions. This reveals which of our options are robust – meeting our needs under a wide 
range of conditions, rather than performing well in only a few. Analytical tools can then help us 
identify the specific conditions in which each option no longer meets our goals. For example, in stress 
testing a flood risk management strategy involving dikes, we might find that it results in high risk if 
two conditions occur: (a) sea level rise proves higher than expected and (b) rapid development results 
in a larger than forecast population living behind the dikes. This focuses our attention on conditions 
that matter to the decision and on reaching agreement upon a decision option, without necessarily 
agreeing on the assumptions that might lead us to prefer that option.  

33. This inverted process promotes consensus around decisions and can help manage deep 
uncertainty around climate change. Analyses performed in this way do not make the decisions for 
decision makers. Instead, they help decision makers debate important questions:  

• Are the conditions under which our option performs poorly sufficiently likely that we should 
choose a different option?  

• What are tradeoffs do we wish to make between robustness and, for example, cost?  

• Which options leave us with most flexibility to respond to changes in the future?  

Decision makers may conclude, for example, that the threat of unexpectedly high sea level rise is 
sufficiently great to warrant modifying the dike plan or augmenting it with other policies. Knowing 
that dikes may fail to reduce risk in a future with high sea level rise and extensive urban development, 
decision makers might modify the current plan to increase dike height or, alternatively, augment the 
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original dike design with policies to shift development away from the dikes. These can be difficult 
debates. But, they are much more useful than debates about the unknowable future. 

34. Importantly, these Agree-on-Decisions methodologies can use the very same metrics as Agree-
on-Assumptions methods. For instance, the net present value of a project or the benefit-cost ratio 
(the metrics often used in cost-benefit analysis) will play an important role in economic analyses that 
use Agree-on-Decisions methods (e.g., Bonzanigo and Kalra 2014; Lempert, Sriver, and Keller 
2012). In other words, the metrics for evaluating and comparing decision options is the same, but the 
decision-making process is different.  

35. One of the potential strengths of Agree-on-Assumptions methods is that they can rank decision 
options and identify the one that optimize decision makers’ metrics. However, this is only 
possible if all priorities and concerns are aggregated into a single metric along which the decision 
options can be monotonically ranked.    

36. However, it is often useful to use multiple metrics to evaluate decision options (e.g., the net 
present value can be complemented with a metrics for distributional impacts), which avoids the 
difficult problem of having to aggregate all costs and benefits into a unique metric. While Agree-on-
Assumptions can use multiple metrics, they often aggregate those metrics into a single weighted 
utility function in order to achieve a ranking of projects. Agree-on-Decisions are better suited to using 
multiple disaggregated and distinct metrics since the aim is often to find decisions that work well 
across a range of assumptions and a range of goals or objectives.  

37. Using multiple distinct metrics has at least three major benefits: 

- First it helps stakeholders with different values reach consensus, since it does not require 
starting the analysis with an ex ante agreement on valuation techniques and relative prices and 
does not provide a unique ranking of projects. For instance, evaluating a risk management project 
through a cost-benefit analysis requires an agreement on the value of life, which is controversial 
and can result in gridlock. This can be avoided if we instead count the number of lives saved as a 
separate metric. 

- Second, by tracking diverse impacts along the analysis, multiple metrics help identify the 
major trade-offs implied by the decision. Consider for instance the choice between two options 
to mitigate risks: building a dike or restoring a mangrove forest. While a cost-benefit analysis 
would produce a ranking as the final outcome, there may be an important tradeoff between these 
choices. For instance, it may be that the dike has a lower cost but leads to environmental losses 
while the more expensive ecosystem-based approach creates co-benefits from recreation and 
biodiversity. A constructive discussion among stakeholders with divergent views is more likely if 
this trade-offs is identified and explicit. 

- Third, identifying tradeoffs helps design policy mixes in which complementary policies 
smooth or mitigate adverse effects for some stakeholders or in some sectors. For instance, 
Figure 1 shows the impact of various climate-urban policies in the Paris agglomeration –  a green 
belt policy, a public transport subsidy, and flood zoning – as measured by five metrics. Each of 
these policies has benefits along certain metrics and costs along others. The net benefit depends 
on how one values these different metrics, and agreeing on an aggregation techniques would be 
difficult. An analysis that tracks multiple metrics simultaneously makes it possible to add specific 
actions to correct for the negative outcomes. For example, a green belt policy (in which 
construction of new buildings is restricted) has a negative impact on housing affordability, and 
may become socially acceptable only if accompanied by complementary actions to reduce 
housing and building construction prices (e.g., with a reduction in land acquisition taxes). These 
options may not be evident when using a single, aggregated metric. 
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Figure 1. Three policies in the Paris agglomeration 
Note: This figure shows a greenbelt policy, a public transport subsidy, and a zoning policy to 
reduce the risk of flooding. Each is rated across several criteria. Positive outcomes are towards 
the outside of the radar plot, while negative outcomes are towards the inside.  
Source: (Viguié and Hallegatte 2012) 

EXAMPLE: FOREST MANAGEMENT USING AN AGREE-ON-DECISION PROCESS 

38. Consider a case in which a local government seeks to manage a heavily forested catchment area 
to regulate downstream floods and providing irrigation for local farmers.1 The government is 
considering several investments and policies, including building one or more dams, constructing 
irrigation canals, establishing pricing schemes for irrigation, and developing a forest management 
plan to control erosion and runoff from timber harvesting. The government’s resources are limited, 
and it is seeking the plan with the highest net present value. Government officials ask a group of four 
experts, A, B, C, and D to determine the conditions for which the forest management program should 
be designed. Together, they determine that future rainfall and demands for timber are the main 
uncertainties that would determine the choice of plan. But their expectations of the future greatly 
differ. Expert A believes that the past will look like the future. Expert B argues that climate change 
will result in more rainfall and development will require more timber. Expert C believes that climate 
change will result in less rainfall but agrees with Expert B that timber demands will increase. Expert 
D agrees with Expert C that there will be less rainfall, but is convinced that there will be demands for 
afforestation due to REDD efforts. 

39. Under an Agree-on-Assumptions approach, we would ask our experts to first reach consensus 
on a best projection. Unfortunately, any such agreement may be difficult and arbitrary since these 
conditions are deeply uncertain. We could invest in research to determine which of the four possible 
futures is the most likely, and then to select the plan that performs best in this future. Many 
practitioners report that decision makers often demand this: they want to know what the best 
prediction is in order to select the best option for that future. If our knowledge base made it possible 
to make accurate forecasts about the future, this approach would be appropriate. It does not work, 
however, when it is impossible to determine which scenario will occur. Several scenarios are often 
equally plausible and none is impossible. As described in the New Orleans case study, one option is 

1 Example adapted from Hallegatte et al. (2012) and Ranger (2013). 
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to attribute subjective probabilities to the different scenarios and calculate the expected value of each 
option. However, as noted earlier, we cannot develop reliable probabilities for future climate or other 
conditions, and so this approach could also lead decision makers astray. 

40. As an alternative, we could identify the plan that is robust, working well across all the 
scenarios. Table 1 shows the performance of each of three candidate plans in each of the four 
scenarios developed by experts, rated from a very high positive NPV (+4) to a very negative NPV (-
4). Looking at the performance across all scenarios helps understand the vulnerability and robustness 
of each of the plans. First, this analysis suggests that no plan is the strongest in all cases. While Plan 1 
has the highest NPV in Scenario A, it also has the lowest NPV in Scenario B, if heavy erosion, 
siltation, and flooding occur. This suggests that Plan 1 is particularly vulnerable to heavy rainfall. It 
would also have excess flood mitigation capacity in scenarios C and D and might not be able to meet 
timber demands either. Those concerned about worst-case plausible scenarios might eliminate Plan 1 
as an option. Plans 2 and 3, on the other hand, are more robust, performing reasonably well in nearly 
all futures. 

41. One way to quantify the performance is to calculate each plan’s regret. Consistent with our use 
of the term in everyday life, mathematical regret is the difference between the utility of a decision in a 
particular scenario, and utility of the best decision that could have been made in that scenario. For 
example, Plan 1 performs very poorly in Scenario B — resulting in a utility of -2. The best option in 
Scenario B would have been Plan 2, with a utility of 3. This gives Plan 1 a very high potential regret 
of 5 (3 – (-2)) in Scenario B. The table calculates regret for each plan in each scenario, where 0 is the 
lowest possible regret. 

42. Plans that have the lowest possible regret across all scenarios are often attractive, as they 
suggest that the plan will work well no matter what the future brings. Plans 2 and 3 have the 
same maximum regret of 1. The average regret is also a useful metric. If we assumed that all 
scenarios are equally probable, a defensible assumption if we have no additional information on the 
scenarios, Plan 3 has a slightly lower average regret of 0.50, in addition to having a low worst-case 
regret. Experts could choose between Plan 2 and Plan 3 based on considerations of cost, feasibility, 
and other factors, or based on later judgments of which scenarios may be more or less likely. 

43. In addition, the analysis shows the potential of developing flexible strategies. It is perhaps easier 
to build a smaller dam first, with expansionary capability, than to build a larger dam that is 
excessive or inappropriate in various scenarios. We might use a real options metric to calculate the 
present value of this future flexibility. Other approaches that are more flexible, such as the forest 
management policy, can be adapted as new information on climate and demand emerges.
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Table 1. Assessment of the performance of the three forest and flood management plans across four scenarios. 
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FEATURES OF ROBUST DECISIONS 

44. The above example highlights several features that can make decisions robust in the face of 
deep uncertainties These include but are not limited to (Hallegatte 2009):  

a. No- and low-regret decisions,  

b. Reversible and flexible decision,  

c. Safety-margin decisions, and  

d. Decisions with reduced time horizons. 

45.  “No-regret” or “low-regret” decisions have high utility no matter what the future brings. Thus, 
they can be robust even to deep uncertainties. For example, reducing leaks in water distribution 
systems is almost always a good investment, regardless of how the climate, future demand, and other 
factors change. Land-use policies that seek to limit urbanization and development in low-lying, flood-
prone areas would reduce disaster losses in the present climate. Climate change, which may increase 
the frequency or intensity of storms, may make such a policy even more desirable. These examples 
suggest that finding a system’s existing shortcomings may reveal no-regret or low-regret strategies: 
such strategies are beneficial over the short term (and thus easier to implement from a sociopolitical 
point of view) and may offer benefits under a wide range of future conditions. This approach needs to 
be used with caution, however, to avoid solving near-term problems with decisions that are sensitive 
to future uncertainties. Building a diversion to transfer water across basins may help reduce near-term 
water scarcity. However, such investments can take decades and cost billions, and climate change 
may alter precipitation patterns, reducing or negating the value of these investments by the time they 
are completed.   

46. Reversible and flexible decisions are typically more robust than irreversible ones because they 
enable us to adjust our decisions as new information becomes available. In this way, reversible 
and flexible decisions can help us reduce our regret. For example, insurance and early warning 
systems can be adjusted every year in response to the new information on emerging risks. As another 
example, when deciding whether to allow the urbanization of an area potentially at risk of flooding 
due to climate change-induced increases in river runoff, the decision-maker must be aware that one 
option is reversible while the other is not. Restricting urbanization has a short-term cost, but if new 
information shows that the area is safe, urbanization can be allowed immediately. This option, 
therefore, is highly reversible, even though it is not without cost since it may prevent profitable 
investments from being realized in the near term. Allowing urbanization now, on the other hand, is 
irreversible or very expensive to reverse. If the area becomes high risk in the future, the choice will be 
to abandon the area or to protect it, both of which may be difficult and expensive. This does not imply 
that urbanization should be rejected. Rather, in the decision-making process, the value of the 
reversibility of a strategy (the option value) should be taken into account.  

47. Flexibility can be built into engineering solutions. The Stormwater Management and Road Tunnel 
(SMART) that runs under the financial district in Kuala Lumpur to relieve traffic congestion offers an 
example (“What Is SMART?” 2013). The tunnel has three levels: two for road traffic and a lower 
level for carrying flash floods from the Klang River under the city and out to the Kerayong River. 
During major storms, cars are excluded from the two traffic lanes and gates are opened to allow 
stormwater to flow through the upper levels of the tunnel. Traffic can enter again within about 48 
hours of closure. The additional construction cost of the multi-purpose tunnel and surface congestion 
costs during closure represent an option premium. But the cost of the multipurpose tunnel is less than 
a traffic-only tunnel combined with a duplicate tunnel dedicated solely to channelling intermittent 
floodwaters. 
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48. Many “safety margin” strategies can reduce the risk of bad options at negative, zero, or 
negligible cost. For instance, to calibrate drainage infrastructure, in 2008 water managers in 
Copenhagen used runoff estimates that were 70 percent larger than their current level. This margin 
helps manage increases in drainage needs due to future population growth and due to potential 
climate change, which may increase heavy drainage demands in Denmark. This 70 percent increase 
has not been precisely calibrated because such a calibration is made challenging by climate change 
uncertainty. But this increase is thought to be large enough to cope with almost any possible climate 
change during this century, considering the information provided by all climate models. This move is 
justified because, in the design phase, it is inexpensive to implement a drainage system able to cope 
with increased precipitation. On the other hand, modifying the system after it has been built is 
difficult and expensive. It is wise, therefore, to seek to be over-pessimistic in the design phase where 
possible (Hallegatte 2009).   

49. Cheap safety margins are especially important for adaptation measures that are not reversible 
or flexible. Irreversible decisions (e.g., development in coastal areas) without inexpensive safety 
margins are particularly brittle to deep climate uncertainties – they can neither be undone nor 
protected. Adding safety margins to irreversible decisions (e.g., adding coastal defenses or improving 
urban water-management infrastructure) can improve robustness, but only if we carefully consider the 
range of potential future climate change scenarios. At the same time, we must recognize that 
resources are extremely constrained in developing countries, and safety margins with modest or even 
low-costs may be beyond reach. 

50.  Reducing the lifetime of investments is one way of reducing uncertainty around a decision. The 
uncertainty regarding future climate conditions increases rapidly with time. This strategy has already 
been implemented in the forestry sector with plants species that have a shorter rotation time. Since 
species choice cannot be made reversible and no safety margins are available in this sector, this 
option is interesting in spite of its cost. In other sectors, it is also often possible to avoid long-term 
commitment and choose shorter-lived decisions. For example, if houses are to be built in an area that 
may become at risk of flooding if precipitation increases, it may be useful to build cheaper houses 
with shorter lifetimes instead of high-quality houses meant to last one hundred years under historical 
conditions. 

 

AGREE-ON-DECISIONS APPLICATIONS 
 

51. There are many practical applications of Agree-on-Decision processes. The specific 
methodologies share a common underpinning: they manage uncertainty by seeking decisions that are 
robust, performing well across a wide range of potential futures. This section summarizes three 
applications of these methodologies to investment decisions: Robust Decision Making applied to 
water resource planning in Southern California; Climate Informed Decision Analysis applied to 
management of the Great Lakes; and Info-Gap for seismic resilience in water systems. These 
examples are not exhaustive – there are many other Agree-on-Decision processes and many other 
applications of these processes. Rather, we seek to illustrate how these methods can be successfully 
applied to complex real-world problems that face deep uncertainty. 

ROBUST DECISION MAKING FOR WATER PLANNING IN SOUTHERN CALIFORNIA 

52. Robust Decision Making (RDM) is a decision framework developed specifically for decisions 
with long-term consequences and deep uncertainty (Schwartz 1996; R. J. Lempert and Schlesinger 
2000; R. J. Lempert et al. 2006; Groves and Lempert 2007; R. J. Lempert and Collins 2007; Stéphane 
Hallegatte 2009; R. J. Lempert, Popper, et al. 2013). RDM is iterative and follows a “deliberation 
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with analysis” process recommended by the U.S. National Research Council for managing climate 
uncertainty (2009). It has been applied to water resource management (Groves, Fischbach, et al. 
2013; Groves, Bloom, et al. 2013; R. J. Lempert and Groves 2010) flood risk management (Fischbach 
2010; R. J. Lempert, Kalra, et al. 2013), energy investments (Popper et al. 2009; Bonzanigo and Kalra 
2014), and terrorism insurance (Dixon et al. 2007).  

53. RDM involves four main steps as shown in Figure 2. First, stakeholders and analysts engage in a 
decision structuring exercise to identify the goals, uncertainties, and decision options to be analyzed. 
Second, analysts use computer simulation models to evaluate the performance of the decisions under 
hundreds or thousands of combinations of uncertainties, which produces a database of performance 
results. Third, visualizations and analysis of this database help decision makers and analysts 
understand the vulnerabilities of their potential decisions, i.e. conditions under which their choices 
would fail to meet their goals. They may suggest new decision options to mitigate those 
vulnerabilities, resulting in an iteration back to step 1. Alternatively, they may fourth consider 
tradeoffs between the options based on their vulnerabilities and other considerations. They iterate 
upon this process until decision makers agree upon a robust strategy. Also, RDM normally involves a 
detailed quantitative analysis, but the underlying framework can inform more “heuristic” – less 
resource-intensive – evaluations (R. J. Lempert and Kalra 2011). RDM is especially useful when 
project plans can be framed as a series of decisions over time, to take advantage of learning explicitly 
and adjust to new information as it comes along. 

 
Figure 2. Steps in an RDM Analysis 

Source: (R. J. Lempert, Popper, et al. 2013) 

54. Robust Decision Making (RDM) was used to help the Inland Empire Utilities Agency (IEUA) of 
Southern California develop its long-term water management plan (R. J. Lempert, Popper, et 
al. 2013; R. J. Lempert and Groves 2010). The utility sought a plan that would provide reliable, 
low-cost water to its customers for the long-term future. It sought to incorporate the impacts of 
climate change into its planning but was hampered by the deep uncertainty in future climate forecasts. 
The results of 21 atmosphere-ocean general circulation models scaled down to the Southern 
California region indicated that the climate could range from 0.1-2.1°C warmer and there could be a -
19 to +8% change in wintertime precipitation. 

55. The robustness of the utility’s Urban Water Management Plan (UWMP) to climate and other 
uncertainties was explored in the range of possible future climates and other socio-economic 
conditions. The utility sought a plan that would have a low total cost, which included the cost to 
implement the plan and the potentially additional cost of meeting future water shortages with imports. 
The RDM analysis evaluated the cost of the UWMP in 200 futures with different assumptions 
regarding the extent of climate change, future socioeconomic conditions, the agency’s ability to 
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implement its management plan, and costs. This is shown in Figure 3, where each data point 
represents the supply and shortage costs in a single scenario. Under this analysis, IEUA would face 
unacceptably high cost in 120 of the 200 scenarios as shown in the shaded high-cost region.  

56. The analysis showed the specific conditions under which the UWMP would not meet IEUA’s 
goals and how augmenting the plan could reduce those vulnerabilities. The UWMP was 
particularly vulnerable to future conditions that were drier, with reduced access to imported water, 
and when natural percolation of the ground water basin decreased. IEUA suggested eight additional 
management options that could be added to the UWMP to potentially reduce these vulnerabilities and 
make the UWMP more robust. Options included increasing water use efficiency, recycling storm 
water for ground water replenishment, storing water from surplus years, and developing the region’s 
water recycling program. In all cases, augmenting the UWMP with additional management strategies 
led to lower costs and reduced vulnerability. Analysts also evaluated the performance of flexible 
plans – ones designed to change over time as new information became available. 

57. Water managers were able to build consensus around a robust water management plan. 
Analysts presented water managers with visualizations of the tradeoffs between each management 
plan’s robustness and its feasibility or difficulty of implementation. These results helped IEUA 
choose to make its original 2005 UWMP flexible and include near-term enhancements to its recycling 
and water surplus storage program. This reduced the number of high-cost cases from 120 to 25. RDM 
also helped the agency build consensus for this plan among its constituents and ratepayers, even those 
who were dubious about climate. 

 
Figure 3. Performance of IEUA’s Urban Water Management Plan in 200 Futures 

Source: (R. J. Lempert, Popper, et al. 2013) 

CLIMATE INFORMED DECISION ANALYSIS FOR MANAGING THE GREAT LAKES BASIN  

58. Like RDM, Climate Informed Decision Analysis (CIDA; also known as “decision scaling”) first 
determines how climate change could affect a project and then, second, assesses the likelihood 
of those effects using multiple climate information sources (Moody and Brown 2013; Moody 
and Brown 2012). This is shown in Figure 4. CIDA was first used to improve management of the 
Great Lakes Basin in the United States. In 2007, the International Joint Commission (IJC) established 
an independent study board composed of United States and Canadian members to review the 
operation of structures controlling Lake Superior outflows and to evaluate improvements to the 
operating rules and criteria governing the system. The study is known as the International Upper 
Great Lakes Study (IUGLS). As a result of the considerable uncertainty associated with future climate 
and lake levels, as well as other sources of uncertainty such as ecosystem responses and the state of 
the navigation industry, a process of selecting the optimal plan based on a most probable future 
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scenario was rejected in favor of a robust decision making process designed to incorporate multiple 
and at times conflicting sources of climate information. The analysis of the Great Lakes Basin plan 
comprised three phases. 

59. First, stakeholders defined performance benchmarks and identified vulnerabilities that would 
lead to unacceptable performance. To prioritize concerns for the regulation of Lake Superior, 
stakeholder experts were convened from state, provincial, federal, and local government agencies, as 
well as special interest groups (boating, hydroelectricity, navigation), and environmental groups (e.g. 
The Nature Conservancy). The experts were tasked with identifying the metrics by which they would 
like the candidate regulation plans to be evaluated. Based on these goals, the stakeholder groups then 
defined what combination of lake level and duration led to acceptable outcomes, and what levels led 
to impacts that were either less favorable or unacceptable. In this way, thresholds designating of 
acceptable performance for candidate regulations plans were established. This allowed the evaluation 
of regulation plans using a common numeraire for each of the different interests, namely, the 
occurrence of unacceptable lake levels as defined by each interest.  

60. Second, stakeholders quantified the climate sensitivity for each proposed plan. Analysts created 
a climate response function, which estimated the consequences (lake levels and associated 
performance metrics) of a given decision (regulation plan) for a set of mean climate conditions that 
were varied to evaluate a broadly defined plausible range of climate change. The function thus related 
climate effects to the performance metrics influencing the decision in a way that was independent of 
any assumptions about the relative likelihood of future climate conditions. Using a parametrically 
varied set of stochastic time series (each representing a given mean climate), analysts identified those 
climate conditions that presented risks (unacceptable lake levels) to each regulation plan. Note that 
climate model projections had not been used in the analysis to this point, yet the vulnerability of 
proposed plans to potential climate futures was revealed. 

61. Third, the plausibility (relative probability) of those conditions was estimated through tailored 
climate information. Given the uncertainty associated with the probability estimates even after 
maximizing credibility, the term ‘‘plausibility’’ is used in place of probability. The decision maker, in 
this case the Study Board, was presented with the risk of each candidate regulation plan, where risk 
was defined as the plausibility of problematic climate conditions (the climate changes that would 
cause unacceptable performance).  The plausibility estimates were represented as imprecise 
probabilities, where a range of probabilities was shown for each climate state based on the difference 
sources of climate information (e.g., climate projections, stochastic analysis, paleo-climate data, and 
expert opinion). Thus, plans could be evaluated in terms of the range of climate change over which 
they maintained acceptable lake levels, i.e., their robustness to climate change. The result was a 
climate-informed robustness index for each candidate plan. The plausibility estimates could be 
adjusted based on different comfort levels of the Board members with different sources of climate 
information.  For example, some preferred considering only the probabilities generated from climate 
model projections, while others preferred only probabilities from historical observations.  

62. In sum, recommendation for a final regulation plan focused on two plans that performed best 
over a very wide range of future climates.  The analysis also revealed that even these “best” plans 
were not robust to climate changes that were quite plausible, leading the Study Board to also 
recommend that the regulation plan be coupled with an adaptive management program to address 
future uncertainty. The Board expressed satisfaction in the use of climate information to make this 
decision. 

 

24 
 



 
Figure 4. Decision scaling steps compared to a traditional analytical process. 
Source: (Brown et al. 2011) 

INFO-GAP FOR SEISMIC RESILIENCE IN WATER SYSTEMS  

63. Like RDM and CIDA, Info-Gap helps decision makers identify robust options, but it takes a 
somewhat different approach. RDM and CIDA use models to assess the performance of options in a 
wide range of potential future conditions and then identify conditions that result in poor performance, 
i.e., conditions to which the system is vulnerable. In contrast, Info-Gap uses models to compute how 
options perform as a function of uncertainty. An Info-Gap analysis defines robustness as “the 
maximum uncertainty in our estimates that can be tolerated while still guaranteeing a particular 
desired result” (Irias and Cicala 2013). An Info-Gap analysis produces a graph showing the 
performance we can robustly achieve on one axis, as a function of uncertainty on the other axis. Like 
RDM and CIDA, Info-Gap does not provide decision makers with the solution; rather it seeks to 
inform the decision-makers on the trade-offs, risks, and vulnerabilities.  

64. Info-Gap typically proceeds through four analytical steps, in collaboration with stakeholders and 
analysts (Irias and Cicala 2013): 

a. Identify decision options or alternatives  

b. Compute performance of each option as a function of increasing uncertainty  

c. Graph the results by plotting performance versus uncertainty  

d. Examine the results in light of the degree of uncertainty that stakeholders and analysts believe to 
exist, and the varying performance of each alternative as uncertainty increases.  

65. The East Bay Municipal Utility District, a public water agency in Northern California, used Info-Gap 
to help it decide how to provide reliable water to Alameda, an island community of 75,000. Alameda 
relies entirely on four water pipelines from the mainland, but these are vulnerable to damage from 
corrosion, physical impact, and earthquakes. 

66. EBMUD is developing a master plan for the island that will ensure reliable water supply by “not only 
managing the possibility of critical combinations of outages, but also managing the financial and 
social consequence of any outages that occur, which likely means keeping the time and cost of 
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recovering from an outage at reasonable levels” (Irias and Cicala 2013). In an initial study, EBMUD 
used Info-Gap to weigh two options: construct new water pipeline or tunnel crossings to the island or 
improve the seismic resilience of an existing pipeline. Their goal was to ensure that at any time, one 
crossing would survive a seismic event, and a second crossing could be returned to service quickly. 
The key uncertainties were the probabilities of failures and the length of time needed to conduct 
repairs, which is a sum of the time of individual repair steps: discovery, setup, investigation, and 
repair. The Info-Gap analysis is currently under way and is helping EBMUD answer two important 
questions (Irias and Cicala 2013):  

a. How wrong can we be about the probabilities of various types of failures, and still have an 
acceptably large overall probability that a crossing survives? 

b. For any given design and construction alternative, how wrong can we be about the duration for 
return to service and still be within the maximum allowable down time? 

E. CONCLUSIONS 

67. Investment decision making is already difficult for any diverse group of actors with different 
priorities and views. But the presence of deep uncertainties linked to climate change further 
challenges decision-making by questioning the robustness of all purportedly optimal solutions. We 
suggest that decision makers can continue to use the decision metrics they have used in the past. Cost 
benefit, cost effectiveness, and multi-criteria metrics are still valid for measuring decision options. 
They differ in their strengths and drawbacks, but these characteristics are distinct from the challenges 
of applying these metrics in a deeply uncertain world. 

68. We suggest that decision makers consider alternative decision processes to traditional ones, 
especially those that lead with analysis and end in agreement on decisions. Agree-on-Decision 
methods start by “stress-testing” options under a wide range of plausible conditions, without requiring 
us to agree ex ante on which conditions are more or less likely, and against a set of objectives or 
success metrics, without requiring us to agree ex ante on how to aggregate or weight them. As a 
result, these methods are easier to apply in contexts of large uncertainty or disagreement on values 
and objectives.  

69. This inverted process promotes consensus around better decisions and can help manage 
uncertainty. Analyses performed in this way do not make the decisions for decision makers or 
provide a single “best” solution, deus ex machina. Instead, they help decision-makers debate 
important questions: “Are the conditions under which an option is vulnerable sufficiently likely that 
we should choose a different option? What tradeoffs do we wish to make between robustness and 
cost, or between various objectives and policy goals? Which options leave us with most flexibility to 
respond to changes in the future?” These can be difficult debates. But, they are much more useful 
than debates about the unknowable future. 

70. A growing set of case studies shows that these methods can be applied in real-world contexts 
and do not need to be more costly or complicated than traditional approaches. While this paper 
focuses on climate change, a better treatment of uncertainties and disagreement would in general 
improve decision-making and development outcomes. 
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APPENDIX 1. UNDERSTANDING CLIMATE UNCERTAINTY 

1. Much useful effort has gone into developing climate models. These models confirm that the planet 
is warming due to greenhouse gas emissions and reveal potential changes in precipitation, 
temperature, and other climate characteristics around the globe. However, climate models cannot 
provide the equivalent of reliable historical climate data for future climates. Instead, climate 
projections can vary widely and it is important to understand why. This appendix summarizes key 
issues in understanding climate uncertainty. 

2. Consider one example. Given the vulnerability of water systems to climate change, a Ghanian urban 
water manager would be wise to ask climate modelers to predict precipitation rates for the next 100 
years, instead of relying on historical data. But using a climate model might be dangerously 
misleading: projections of future precipitation changes in the region are very uncertain. Figure A1 
shows the change in annual rainfall in 2080-2100 (with respect to the 1980-2000 period) in Africa 
according to two climate models (IPCC 2007). For Ghana, one model (CCSM3) predicts a 20% 
increase in precipitation, while another (GFDL) predicts a 30% decrease! It would be unwise for our 
water manager to tailor water management projects to either one of these or any other particular 
projection. 

 
Figure A1. Change in annual rainfall in 2080-2100 (with respect to the 1980-2000 period) in Africa 
according to two climate models. 

Source: (IPCC 2007) 

3. Such great uncertainties about future climate change stem from three major sources: 

• Future emissions of greenhouse gases, which will shape future climate change. Future 
emissions, in turn, are driven by demographic and socioeconomic trends, technology, values and 
preferences, policies, which are also deeply uncertain. Scientists have developed emissions 
scenarios to capture a wide range of potential emissions trends that consider these diverse drivers. 

• Scientific uncertainty and modeling limitations. These limitations are a result of our imperfect 
knowledge of the climate system and of the systems that climate, in turn, affects, such as lakes, 
glaciers and ecosystems. For instance, the effect of a given quantity of greenhouse gas on global 
mean temperature is uncertain.2 The interactions between the oceans and the atmosphere, rates of 
melting of ice sheets, and the effect of clouds may have a significant impact on climate change 
and are still being studied and modeled. There is also uncertainty in the regional effects of global 
warming.  

2 In particular, “climate sensitivity” refers to the increase in global mean temperature from a doubling of the CO2 concentration 
in the atmosphere. This sensitivity is uncertain. 
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• Irreducible natural variability. Global climate variables have their own dynamics linked to the 
chaotic behavior of the climate system. Climate models provide climate statistics, e.g. averages, 
variances, likelihoods to exceed thresholds, etc., but they cannot provide weather forecasts. In 
other words, they can estimate the average number of rainy days in the summers of 2060’s, but do 
not say anything about the precipitation in any given day or even any specific summer.  

4. These three uncertainties are sometimes referred to as policy, epistemic, and aleatory 
uncertainty, respectively. Their respective contribution to total uncertainty depend on the timescale 
and the spatial scale. At a global scale (A2, left), and over the short term, natural variability and 
model response play the largest roles, and the emission a very small role; over the long term, the 
emissions dominate other sources of uncertainty.  

 
Figure A2. Source of uncertainty over time globally (left) and in the British Isles (right). 

Note: The green is emission uncertainty, the orange is natural variability, and the blue is (climate) model 
uncertainty; the variable is temperature change.  

Source: (Hawkins and Sutton 2009) 

5. It is thus critical not to over-interpret the difference between two climate scenarios run with 
different emissions or different models. The difference might be caused by aleatory uncertainty, 
with no significance. To rigorously interpret the difference between two scenarios, it is necessary to 
use ensembles, i.e. a sufficiently large set of simulations run with the same model and the same 
emission scenario. The spread of these simulations will represent the effect of natural variability as 
simulated by the model, and only differences that are robust to this effect can be interpreted as the 
effect of different emissions scenarios or of different models.  

6. Also, it is critical to recognize that the spread across models do not represent the full 
uncertainty. All climate models use the same knowledge base and are based on the same basic 
methodologies (e.g., the discretization of ocean and atmosphere dynamics in a grid, parameterization 
of many physical mechanisms such as convection). So it is very likely that all models share common 
biases, making the epistemic uncertainty larger than the differences across models. For instance, all 
climate models imperfectly represent convection and monsoons in India or West Africa, making the 
model projection in these regions particularly uncertain. Thus, testing project robustness, looking 
outside the range of model results is advisable. 

7. At a regional (or continental) scale, the factors’ respective shares are different. Natural 
variability is much more important regionally than globally, emission uncertainty plays a more 
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moderate role, and climate model uncertainty remains large (A2, right). This suggests that it is much 
more difficult to predict future climates when looking at one country or one region than globally, 
regardless of future progress in our understanding of climate change. Natural variability means that 
the climate signal is more difficult to extract (and – as already mentioned – forecasts of future climate 
remain out of reach).  

8. There is also large uncertainty from differences between global climate models. The IPCC 
(2013) provides results from 42 global climate models. The models agree on the very big picture 
(more warming in high latitude than in low latitude; more precipitations in high latitudes; less 
precipitation around the tropics; more precipitation around the equator). However, the differences can 
be huge in some regions (e.g., half of the models predict an increase in precipitation over India; half 
of the models predict the opposite; and – as a consequence – the “average model” predicts no change, 
showing the risk of averaging projections).  

9. When looking locally, we usually do not use global climate models. Instead, we use downscaling 
techniques which can be done with statistical tools or with regional climate models (RCM). Statistical 
methods use statistical relationships, calibrated on historical data, to relate large-scale drivers – which 
climate models can reproduce – to local phenomena – which climate models cannot reproduce (Elsner 
and Jagger 2006; Mestre and Hallegatte 2009; Nuissier et al. 2012). Even though our knowledge of 
the laws of physics helps select potential predictors, this method is not directly based on physical 
laws. Such statistical methods are computationally efficient and reproduce the current climate well. 
Statistical models, however, have two main drawbacks: first, they need long series of reliable data; 
second, even with a sufficiently large data range, it is difficult to know whether a statistical 
relationship will remain valid in a future climate.  

10. To avoid the problem of validity of historical relationships, one may use physical models, which 
are based on physical laws. Physical models, which model and simulate biophysical and 
atmospheric processes, are of particular interest when investigating extreme patterns and variability 
changes. Of course, physical models often require calibration and bias correction, so the distinction 
between physical models and statistical models is sometimes fuzzy. Examples are Regional Climate 
Models (RCMs); see (Knutson et al. 2010). RCMs are difficult to develop and may only have 
resolution of about 25 km, but they are less data-dependent. The confidence in RCMs is generally 
higher because they do not have to assume that the relationship between large-scale and small-scale 
climate variables remains constant in a future – possibly very different – climate. Such an assumption 
is questionable. Thus, statistical analyses are more reliable over the short to medium term, while 
RCMs are necessary to understand large warming over the long term.   Nonetheless, in the long term 
RCMs remain driven by the input from GCMs, and so they do not resolve uncertainty related to 
climate variability, for example, that is produced by the GCMs.  

11. In almost all cases, downscaling improves our ability to reproduce the current climate, but it 
does not reduce the uncertainty on future changes. Downscaling makes it possible to represent 
additional mechanisms and is likely to improve both the ability of represent the current and future 
climate (for instance, downscaling technique is required to look at precipitation in coastal or 
mountainous areas, or to look at small-scale phenomenon like heavy precipitations). But downscaling 
cannot help manage uncertainty if global climate models disagree. As in West Africa and the 
monsoon, downscaling can increase the resolution of scenario with an increase in precipitation 
scenario and a scenario with a decrease in precipitation, but the difference between both will not be 
resolved. 
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