Monitoring and Warning Systems for Natural Phenomena
The Mexican Experience

Roberto Quaas W, Enrique Guevara O.
Mexican National Center for Disaster Prevention
CENAPRED

ego@cenapred.unam.mx
http://www.cenapred.unam.mx

March, 2006
Mexico Hazard Profile

Phenomena

<table>
<thead>
<tr>
<th>Phenomena</th>
<th>Area (Km²)</th>
<th>% del Nal territor.</th>
<th>Inhabitants (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storms, hurricanes, floods</td>
<td>815'353</td>
<td>41%</td>
<td>31.3</td>
</tr>
<tr>
<td>Earthquakes</td>
<td>540'067</td>
<td>27%</td>
<td>31.0</td>
</tr>
<tr>
<td>Droughts</td>
<td>573'300</td>
<td>29%</td>
<td>21.2</td>
</tr>
<tr>
<td>Fires</td>
<td>747'574</td>
<td>37%</td>
<td>28.4</td>
</tr>
</tbody>
</table>

- **States exposed to the impact of hurricanes:** 11

- **Active volcanoes in Mexico City:**
 - 2005, impact of hurricane Stan in Chiapas, Mex
 - Seismic Hazard
 - 2005, impact of hurricane Stan in Chiapas, Mex

- **Seismic Hazard**
From 1900-1999 in Mexico occurred 101 great disasters(*):

- Hydrometeorological: 59%
- Geological: 20%
- Technological: 19%
- Sanitary: 2%

From 1980-1999:

<table>
<thead>
<tr>
<th>From</th>
<th>Deaths</th>
<th>Total losses (Millon USD)</th>
<th>Average death toll per year</th>
<th>Average total losses per year (Mill USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-1999</td>
<td>10,114</td>
<td>14,547</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>2000-2004</td>
<td>1,304</td>
<td>2,149</td>
<td>261</td>
<td>430</td>
</tr>
</tbody>
</table>

Economic Losses

- Hydrometeorological: 64%
- Geological: 12%
- Technical: 12%
- Sanitary: 11%

Deaths

- Hydrometeorological: 27%
- Geological: 61%
- Technical: 12%

(*) Source: Diagnóstico de Peligros e Identificación de Riesgos, CENAPRED, 2000
(**) Source: D. Bitrán B., Características del impacto socioeconómico de los principales desastres ocurridos en México, 2001
To reduce these unacceptable figures, Mexico has established new initiatives to promote prevention and disaster risk reduction:

- It has been established in the National Development Plan, a policy to change from a reactive strategy to a preventive one (privilege prevention and disaster risk reduction, without distracting emergency management)
- The integration of a National Risk Atlas
- Funds for emergency management (FONDEN) and funds for disaster prevention (FOPREDEN, FIPREDEN)
- We recognize that Early Warning Systems are key elements in preventing and reducing the impact of disasters. Systems for three natural phenomena are discussed in this presentation:

 ✓ Early Warning System for Tropical Storms (coordinated by National Civil Protection authorities, close collaboration with Meteorological Service and National Center for Disaster Prevention, CENAPRED)

 ✓ Warning System for an active volcano (coordinated by Civil Protection and operated by CENAPRED, with participation of the National University of Mexico, and USGS)

 ✓ Earthquake Alarm System for Mexico City (operated by a civil association)

I will briefly describe the monitoring techniques, some forecast process and dissemination mechanisms.
In the year 2000, SIAT was established by National Civil Protection Authorities and involves a close coordination and collaboration between different institution at federal, state and municipality levels, to timely alert people and the corresponding actions and procedures.
The system considers different stages of warning to different areas, depending on the characteristics of the cyclone.

<table>
<thead>
<tr>
<th>Promedio de Escalas</th>
<th>detección o más de 72</th>
<th>72 a 60 horas</th>
<th>60 a 48 horas</th>
<th>48 a 36 horas</th>
<th>36 a 24 horas</th>
<th>24 a 18 horas</th>
<th>18 a 12 horas</th>
<th>12 a 6 horas</th>
<th>menos de 6 horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a 1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 2.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 a 3.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 a 4.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approach Table / Front part of the cyclone

Withdrawal Table / Back part of the cyclone

Impact of hurricanes in Mexico from 1981-2005 (deaths)*

Scale based on:
E = 0.5 (I + 0.0377R)
- Saffir-Simpson Scale
- Circulation Scale
- Transferring velocity
- Distance (34 knots wind line)
Popocatepetl (smoking mountains) is an active volcano with 13 eruptions in the last 500 years. Almost 20 million people live in a radius of 80 km around the volcano, approximately one fifth the population of Mexico.
Popocatepetl monitoring and warning system

Central data acquisition and processing facility at CENAPRED

64 telemetry signals, 16 dedicated computers, warning and communication system

MONITORING:
- Visual
- Seismic
- Geodesic
- Geochemical

- 20 remote measurement points
- 9 seismometers
- 4 tiltmeters
- 3 flow detectors
- 1 real-time hi-res video
- 1 infrared camera
- 1 automatic remote controlled EDM with 4 measuring points

- Other measurements:
 SO₂, COSPEC
 CO₂, LICOR
 Chemical analysis of ash and water springs
 Satellite images, infrasonic sensor
Popocatépetl monitoring and warning system

- **Central Recording Station at CENAPRED**
- **Scientific Committee**
- **Authority**
 - Civil Protection
 - Air Traffic Controllers
 - POPOTELEM (Telephone Messages)
 - POPOBIP (PAGER Messages)
 - Internet (Bulletins)
 - Volcanic Traffic Light

Instrumentation and Monitoring

Hazard Map

- **Emergency planning**
 - Coordinates actions and procedures between federal gov, 5 states, and army

- **Public preparedness**

- **Implementation of warnings and communication of information procedures**
The *Traffic Light Alert* translates the diagnostic of the scientific group into a scale of risk levels, expressed in terms of the most probable scenarios that may develop in a given time scale, as well as into actions to be taken by Civil Protection Authorities and the population.
Popocatepetl monitoring and warning system
Earthquake Alarm System

Mexico is located in a high seismic region. In average, every year an earthquake of $M>6.5$ occurred

![Graph showing earthquake distribution from 1900 to September 2005](image)

Source: National Seismological Service, UNAM

Mexico City is located about 300 km far from an identified seismic gap, which has a high potential to rupture in a major earthquake.
Earthquake Alarm System
Lessons learned

- Although there are different agencies and institutions involved in different hazards, it has been a good practice that National Civil Protection Authorities coordinate warning systems (EW for cyclones and Popocatepetl volcano).

- Coordination of national authorities with local authorities is an essential element.

- It has been useful the use of a traffic light alert that translate the forecast or diagnosis of the scientific and monitoring group into a scale of risk levels, expressed in terms of the most probable scenarios that may develop in a given time scale as well as into action to be taken by Civil Protection Authorities and the population.

- It has been important to test the effectiveness of the warning systems, including dissemination process and response.

- The implementation of Early Warning Systems in Mexico have undoubtedly contributed to prevention. We also recognize that there are still many aspects to improve and consider.
Monitoring and Warning Systems for Natural Phenomena
The Mexican Experience

Recommendations

- Early Warning Systems for different hazards should be, when possible, coordinated by a national authority, having a close coordination with the different actors involved (local, scientific, media, etc.)

- There should be consistency in terminology of warnings of different hazards and dissemination mechanisms

- Risk assessment for different phenomena should be clearly identified and promote consciousness and preparation among authorities, stakeholders, media and public

- The establishment of different alert levels for different hazards should be very well defined and they should correspond to specific actions and procedures to be taken by authorities and public

- National funds should be available for the implementation and maintenance of warning systems

- There is a need to test early warning dissemination mechanisms and response, improve and correct them

- Involvement of scientific and specialists of different hazards its an essential factor