

POLICIES FOR SAFER BUILDING/HOUSING Ministry of Land, Infrastructure and Transport (MLIT), Government of Japan

Past, Present And Future: What Works In Achieving Safer Buildings

Prof. Javier R. Piqué President, Peruvian Permanent Committee for Seismic Design

- Limiting displacement codes: the Peruvian experience
- Existing non engineered construction: effective inexpensive reinforcing
- Use of land: planning for safe construction

WCDR

COMMON BUILDIGN USE*

Use or category	Number of buildings	%
School buildings	68	47
Office buildings	18	20
Hospitals	8	10
Hotels	7	6
Industrial	5	6
Other uses	4	11
TOTAL	144 buildings	100%

(*) Kuroiwa, J. "Disaster Reduction"pp.186 PERUVIAN PERMANENT COMMITTEE FOR SEISMIC DESIGN Prof. Javier R. Pique, President - Lima, Peru

Number of buildings	%
100	69
18	12,5
8	5,5
7	5
5	3,5
4	3
2	1,5
144 buildings	100%
	18 8 7 5 4 2

Prof. Javier R. Pique, President - Lima, Peru

Evolution of Peruvian Seismic Standards

- 1964: First project of Peruvian Standard, based on SEAOC
- 1970: First Peruvian Standard nationwide
- 1977: Second Peruvian Standard (After quakes of: Chimbote–Huaraz 1970, Lima 1974)
- 1997: Third Peruvian Standard (After Nazca 1996 earthquake, Mexico 1985, Loma Prieta 1989, Northridge 1994, Kobe 1995)
- 2003: Revision of 3rd Standard

HUARÁZ 1970

School building

20

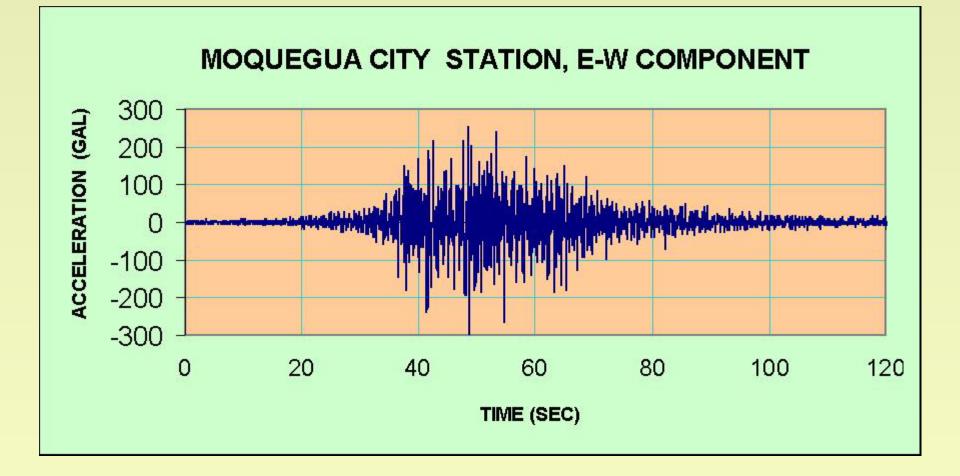
+

NAZCA 1996

LAB BUILDING

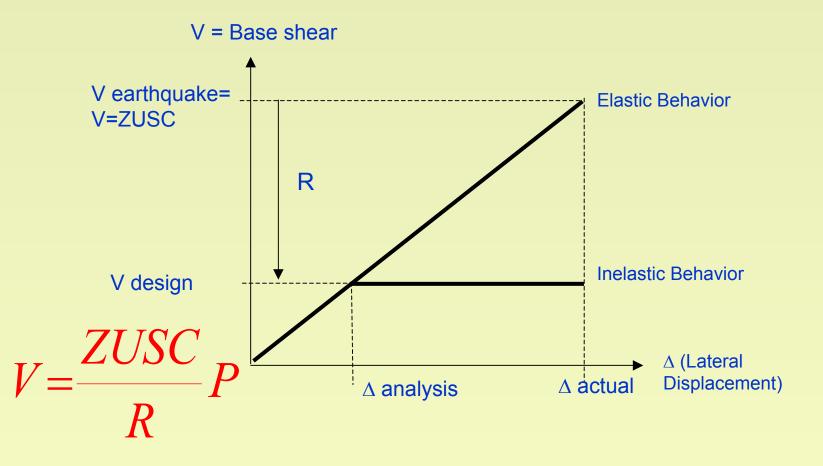
Earthquake in X direction Maximum Displacements (RNC-1977)

	Displacements (cm)		Drift	
FLOOR	X	У	X	У
2do floor	6.494	0.000	1/144	< 1/5000
1er floor	4.091	0.013	1/90	< 1/5000



ATICO Earthquake, Southern PERU 23 June 2001 - Magnitude M_s 8.2, Mw=8,4

1977 Standard: Allowable Displacements = damage

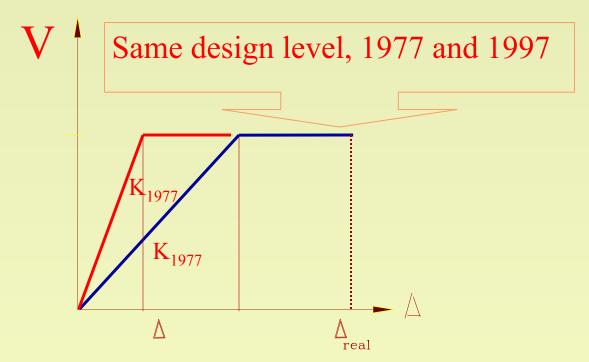

Photo: E. Fierro PERUVIAN PERMANENT COMMITTEE FOR SE Prof. Javier R. Pique, President - Lima,

国土交通省

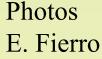
1997 = Change of Standars work

Comparison between base shear coefficients

Seismic Standard	1977	1997
factor Z	1	0.4
factor U	1	1
factor S	1	1
factor C (short periods)	0.4	2.5
ZUCS	0.4	1


To obtain similar base shear, R factors had to be increased: 2,5 times

Standard	1977	1997	Increment of demand
PREDOMINANT MATERIAL	$\begin{pmatrix} \Delta_I \\ / he_i \end{pmatrix}$	$\begin{pmatrix} \Delta_{I} \\ /he_{i} \end{pmatrix}$	$\left(\frac{\Delta_{77}}{\Delta_{97}}-1\right)\cdot 100$
Reinforced Concrete	0.010	0.007	43%
Steel (*)	0.015	0.010	50%
Masonry	0.010	0.005	100%
Timber	0.015	0.010	50%



Displacements 1997 = 2.5 x 4/3= 3.33 times larger and compared against a stringent drift

CONCLUSIONS 1

- All school buildings in Southern Peru designed with 1977 Standard experienced structural and nonstructural damage. None of the schools designed and built under the 1997 Standard suffered damage.
- Change in Peruvian Seismic Standards resulted in higher computed lateral displacements. Structures designed using 1997 new Standard have to be much more rigid than before.

CONCLUSIONS 2

- Schools continue to operate unharmed, even when peak ground acceleration must have been higher than design acceleration (0.3g was registered 100km south, even further from epicenter)
- Changes in structural element dimensions to achieve additional stiffness increase structural costs by 30%. No cost was involved after the earthquake because of absence of damage.

- Structures designed with 1977 Standards had to be repaired, they could not be used for several months and cost of retrofitting and stiffening reach up to 40% of initial cost
- It is recommended Codes should incorporate:
 - Restrict displacements
 - Limit irregularities severely. Essential buildings should be regular
 - Either assure safe collapse mechanisms or limit use of frame systems alone

POLICIES FOR SAFER BUILDING/HOUSING Ministry of Land, Infrastructure and Transport (MLIT), Government of Japan

Existing non engineered buildings: improvement in adobe housing

50% of world housing is non-engineered

The built environment

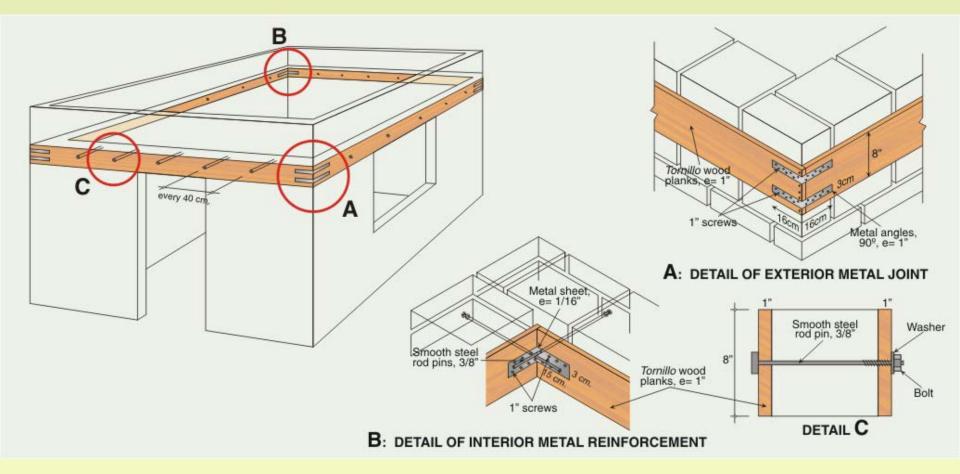
Engineered

Prof. J Gutiérrez Costa Rica. XIII WCEE

Non-engineered

Vernacular

1-1


Limón, Costa Rica, Earthquake (April, 22, 1991 ML = 7.5 MMI = IX) 30 *'bahareque'* houses with prefabricated panels at epicenter, none was damaged

Prof. J Gutiérrez Costa Rica. XIII WCEE

Proposed reinforcing for less vlnerability (Kuroiwa-CISMID)

国土交通省

Laboratory tests show high strength and improved ductility

Full scale model . 0,8g pga

Kuroiwa, J. "Disaster Reduction" pp.143

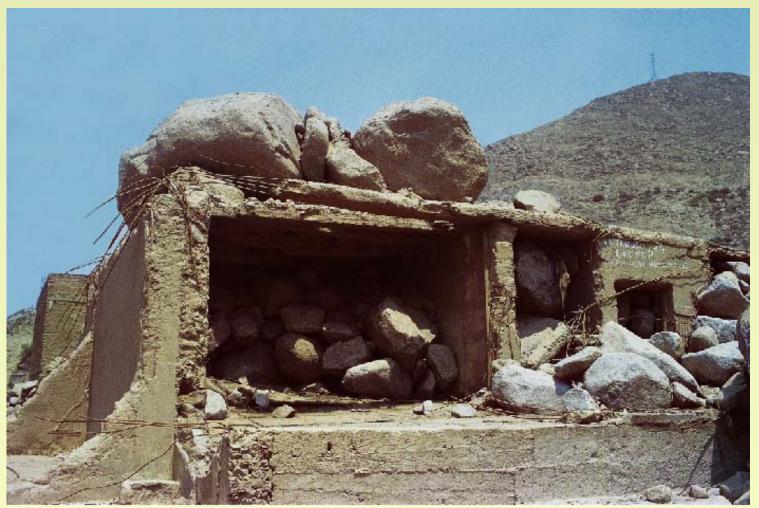
国土交通省

Full scale model . 1,0g pga. Roff has not fallen

CONCLUSION

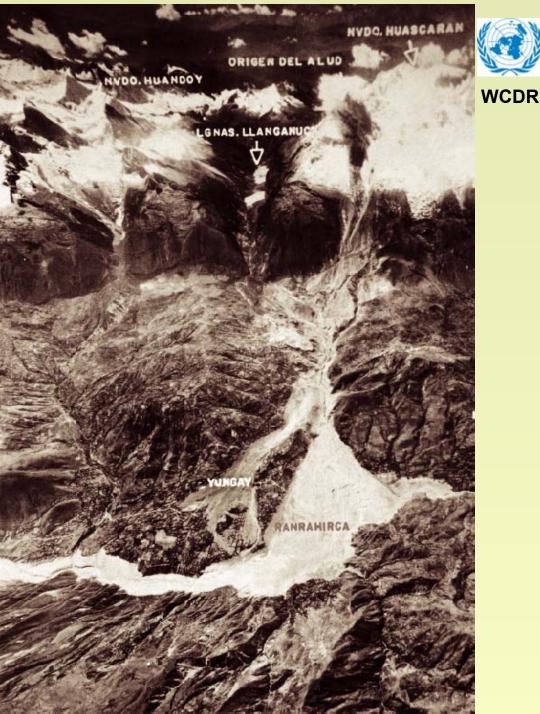
- Implement programs to support retroffiting with training and long term credit or subsidies
- Non-engineered heavy housing in high intensitie areas should be relocated

POLICIES FOR SAFER BUILDING/HOUSING Ministry of Land, Infrastructure and Transport (MLIT), Government of Japan


Planning for future occupation: The importance of location

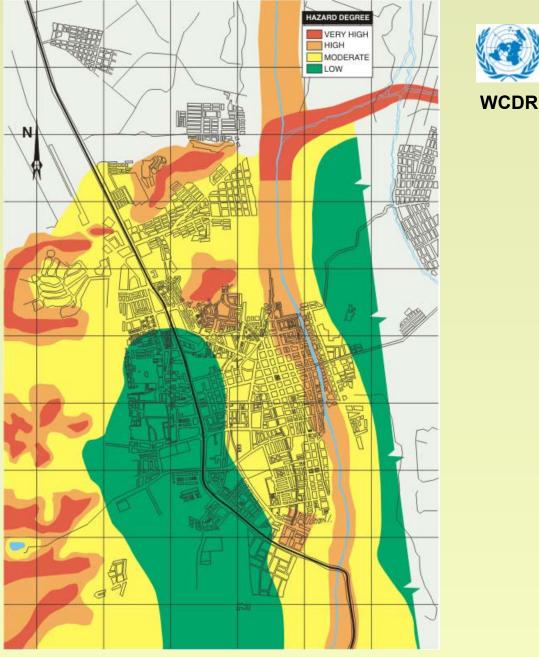
Plan land use

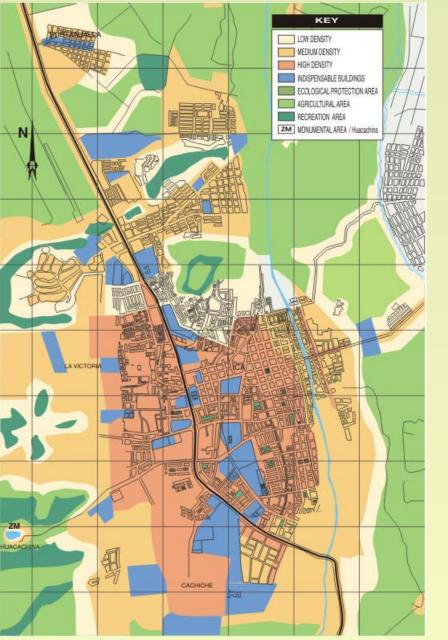
Avalanche: debris flow, 1987. Observe quality materials, wrong location



Avalanche
caused by
earthquake:
Huaraz 1970
67 000 dead

Kuroiwa, J. "Disaster Reduction" pp.143




Hazard map of Ica, Peru

Kuroiwa, J. "Disaster Reduction" pp.44

Land use plan for Ica, Peru

WCDR

Kuroiwa, J. "Disaster Reduction" pp.44

CONCLUSIONS

- Good location is essential in reducing vulnerability to all natural hazards
- Once estimated, prepare land-use plan and enforce compliance
- Effective policies should concentrate in:
- Simple Codes, low cost retroffiting , location

POLICIES FOR SAFER BUILDING/HOUSING Ministry of Land, Infrastructure and Transport (MLIT), Government of Japan

Thanks for your kind attention