POLICIES & STRATEGIES FOR SAFE BUILDING/HOUSING CONSTRUCTION IN INDIA

by Dr. Anand S. Arya, FNA, FNAE Professor Emeritus Indian Institute of Technology, Roorkee and National Seismic Advisor, Ministry of Home Affairs, GoI – UNDP Disaster Risk Mitigation Programme

CHALLENGE OF EARTHQUAKE DISASTERS

- Loss of 100,000 lives due to earthquakes in 100 years.
- Loss of 20,000 lives in Kangra earthquake of 1905
- 13,000 were killed in 1934 in Bihar- Nepal in M 8.4 earthquake, again 900 killed in Aug. 1988 in M 6.6 Quake (M6.6 is 1/500 of 1934 Quake of M8.4)
- Anjar in Kachchh was destroyed in 1956 and again now in January 2001.

EARTHQUAKE HAZARD ZONES 2002

Zone V MM IX or more

" IV MM VIII

" III MM VII

Zone II MM VI " I MM V or less together now make Zone II MM VI or less Area under the zones 12% IV 18% III~27% Total damageable $\sim 57\%$

SEISMIC RISK TO BUILDINGS

TABLE 3 -VARIOUS BUILDING TYPES BY WALL MATERIALS IN INDIA*

Wall Type	Number of Housing Units			Damage Vulnerability		
	Million		% of Total	in MSK Intensity		
				VII	VIII	IX
Earthen Walls	R	67.2	34.46	M	H	VH
(mud, unburnt brick/blocks)	U	7.5	3.83			
Stone walls	R	17.3	8.87	Μ	H	VH
	U	4.4	2.23			
Burned Brick Walls	R	36.35	18.64	L	M	H
	U	32.25	16.54			
Concrete Walls	R	1.16	0.59	VL	L	M
	U	2.80	1.44			
Wood & Ekra Walls	R	2.00	1.02	VL	L	L
	U	1.12	0.58			
GI and other metal sheets	R	0.25	0.13	VL	VL	L
	U	0.76	0.39			
Bamboo thatch, leaves, etc	R	18.43	9.45	VL	VL	L
	U	3.20	1.64			

*Census of Housing 1991, total housing units = 195 million. R = Rural, U = Urban, VH = Very High, H = High, M = Moderate, L = Low, VL = Very Low

Relationship of Seismic Intensity, Building Type & Damage Grades

Few : Less than(15±5)%; *Many*: Between(15±5) to(55±5)%;

Most: Between (55±5) to100%

M A S	Type of Building	Zone II MSK VI or less	Zone III MSK VII	Zone IV MSK VIII	Zone V MSK IX or More
O N R Y	Mud and Stone	<i>Many</i> of grade 1 <i>Few</i> of grade 2(rest no damage)	<i>Most</i> of grade 3 <i>Few</i> of grade 4(rest of grade2or1)	<i>Most</i> of grade 4 <i>Few</i> of grade 5 (rest of grade 3,2)	<i>Many</i> of grade 5 (rest of grade 4&3)
B U I L	Brick	<i>Many</i> of grade 1 <i>Few</i> of grade 2(rest no damage)	<i>Many</i> of grade 2 <i>Few</i> of grade 3(rest of grade 1)	<i>Most</i> of grade 3 <i>Few</i> of grade 4 (rest of grade 2)	<i>Many</i> of grade 4 <i>Few</i> of grade 5 (rest of grade 3)
D I N G	Concrete & wood frame	<i>Few</i> of grade 1(rest no damage)	<i>Many</i> of grade 1 <i>Few</i> of grade 2 (rest of grade 1,0)	<i>Most</i> of grade 2 <i>Few</i> of grade 3 (rest of grade 1)	Many of grade 3 Few of grade 4 (rest of grade 2) 6

KACHCHH EARTHQUAKE IN GUJARAT

Date of Occurrence	:
Time	:
Epicenter	:
Magnitude	:
magnitude	
Intensity, maximum	:

26th January 2001

8.46 a.m.

23.6 ⁰ North Latitude and
69.8⁰ East Longitude,
20km North East of Bhuj

6.9 Richter Scale7.7 Moment magnitude7..9 Surface Wave

IX-X MSK Scale

Affected Areas

21 Districts affected out of 25 Districts.

7633 out of 18,356 villages of the State affected.

Total Population affected : 16.04 million.

DAMAGE TO HOUSES:

Houses totally collapsed or destro	oyed:	2,33,660
Houses partially damaged		9,71,538
Total Houses Damaged		1. 2 million
High-rise buildings collapsed in Al	hmedab	ad: (700 killed)
Four Towns in Kuchchh lie in ruin	s, 450 v	illages flattened

Casualties

Human lives lost	13,811
Total Injured	1,66,836
Seriously Injured	20,717
Operation Performed	17,000

Community Buildings to be Repaired/Reconstructed:

Anganwadis	3186
Women hostels/creches	85
General hospitals	3
Other health buildings	1930
Schools rooms	20,000

LESSONS LEARNED

Reconstruction and New Construction Of Buildings and Infrastructure Elements

- (i) Familiarity with the seismicity of the Area
- (ii) Learning the Earthquake Resistant Codes & Guidelines
- (iii) Adoption of safe Building Practices in Seismic Zones
- (iv) Provision of Disaster Resistance Requirements in Building Bylaws
- (v) Provision of safe Planning Requirements in Local Area Development Regulations
- (vi) Effective Enforcement of Bylaws and Regulations

C. Guidelines Published by Gujarat State Disaster Management Authority (GSDMA) authored by Dr. A.S. Arya

- Reconstruction and New Construction of Houses in Kachchh Earthquake Affected Areas of Gujarat, first printing June 2001 and 2nd printing in January 2002.
- 2. Control on Quality of Construction in Earthquake Affected Areas of *Gujarat,* printed in June 2001.
- 3. *Guidelines for Construction of Compressed Stabilised Earthen Wall Buildings,* printed in December 2001.
- 4. *Guidelines for Cyclone Resistant Construction of Buildings in Gujarat,* printed in December 2002.
- 5. Restoration and Retrofitting of Masonry Buildings in Kachchh Earthquake Affected Areas of Gujarat, printed in March 2002.

२.

З.

4. ٩.

9.

٤.

९. द्वार

१०. खिडुकी

रैफ्टर

- व्यवस्था
- Fig. 13: Overall arrangement of reinforcing in masonry double storey buildings
- १. सरदल पंट्रिटका
- २. फर्शी पट्टिका
- कोने में उर्ध्व सरिया ₹.
- ४. दरवाजा
- ५. खिड़की
- 1 Lintel band
- 2 Roof/floord band
- 3 Vertical bar at corner
- 4 Door
- 5 WindoW

चित्र १४: ढलान छत वाले दो मंजिला भवन में प्रबलन की व्यवस्था Fig. 14: Overall arrangement of reinforcing in masonry double storey building having pitched roof

- १. सरदल पट्टिका 1. Lintel band
 - वलीक पट्टिका 2. Eave level (Roof) band
 - त्रिअंकी पट्टिका 3. Gable band
- ४. फर्शी पट्टिका 4. Floor band
 - कुर्सी पट्टिका 5. Plinth band खड़ा स्तर
 - 6. Vertical bar
 - Rafter 7.
 - 8. Holding down bolt/Vertical bar स्थापक काबला

10

9 Door

Preventive Strategy for Damage Reduction

NEW CONSTRUCTIONS

•Government Sector Buildings & Infrastructure:

- Follow the E.Q. Resistance Codes Strictly.

•Public Sector and Private Undertakings

- Mandatory use of Building Codes.

•Private Buildings in Local Body Areas

- Improve Building Bye Laws with Earthquake Resistance Provisions and Ensure Effective Implementation.

•Private Buildings in Rural Areas

- Demonstrative Constructions,
- Building Technology Centres,
- Awareness and Training to Artisans.

STRATEGY FOR UPGRADING THE STRENGTH OF **EXISTING CONSTRUCTIONS** BY RETROFITTING

PRIORITIZATION OF BUILDINGS AND STRUCTURES

(a) Buildings:

The following and others to be identified:

(i) Instructional, laboratory and library buildings of educational institutions (schools, colleges, institutes and Universities).

(ii) Hospitals including wards, dispensaries, clinics, etc.(iii) Congregation halls, temples, churches, cinemas, theatres etc.

(iv) Residences of VIP's and top administrative officers in the districts (Collector, SP, CMO and the like needed for immediate Response.

(b) Service Structures & Infrastructure: The following among others: (i) Water tanks and towers (ii) Telephone exchanges, fire stations, water supply pump houses (iii) Bridges and culverts (iv) Electric power houses and substations (v) Monuments, Heritage Buildings, Museums (vi) Critical and Hazardous industries (vii) Railway stations, Airport buildings and towers

Priority may be given in order of Zones V, IV & III.

LOSSES IN A HYPOTHETICAL EARTHQUAKE, IF OCCURRED M=8.0 AT KANGRA, HIMACHAL PRADESH IN 1991

TABLE 5 – DISTRIBUTION OF HOUSES BY PREDOMINANT MATERIALS OFROOF AND WALL* AND LEVEL OF EARTHQUAKE DAMAGE RISKKANGRA DISTRICTHIMACHAL PRADESH

Wall and Roof Combination		Census Houses		Level of Risk under Eq				
· · ·		N		Inten	sity MS	K		
		No. of	%	<u>>IX</u>			<u> <vi< u=""></vi<></u>	Notes
		Houses			Area	<u>in %</u>		-
CATECODY	1 1 1	720	0.10	98.6	1.4	0.0	0.0	
CAIEGORY - A	Urban	/38	0.19					Building Categories
All most slaming	Rural	23,239	5.84	1777				Catagory A
	Total	23,977	0.03	VH	H	·		Buildings in field-
A2 Unburned Brick	Urban	4.596	1.16		+			stone rural structures
wall	Kurai	2/1,017	68.24	1777		<u> </u>		unburnt brick houses
a) sloping roor	Total	2/6,01/	69,40	VH_	H			clay houses
b) Elat roof	Urban	83	0.02					-
0) Plat 1001	Rural	5/4	0.14					Category-B
	Total	657	0.17	VH	H			Ordinary brick
A3. Stone Wall		0.070	0.67					buildings; buildings
a) Sloping roor	Urban	2,676	0.67					of the large block and
	Rural	16,530	4.16	177-	+			prefabricated type,
b) Elet reaf	Total	19,208	4.83	VH	H		ļ	half-timbered
b) Fiat 1001	Urban	1,114	0.28			ļ		structures, building in
	Rural	2,641	0.66			ļ		natural hewn stone
	Total	3,755	0.94	VH	H			-
Total – Category – A		323,614	81.37	VH	H	<u> </u>		Category – C
CATEGORY – B						ļ	ļ	Reinforced building,
B. Burned Brick Wall	Urban	3,028	0.76			1		well burnt wooden
a) Sloping roof	Rural	20,077	5,05					structures
	Total	23,105	5.81	H				-
b) Flat roof	Urban	7,199	1.81					Category - X
	Rural	34,083	8.57					Other types not
	Total	41,282	10.38	H	M			covered in A,B,C
Total-Category – B		64,387	16.19	H	M			These are generally
CATEGORY – C								light.
C1. Concrete Wall	Urban	76	0.02					
a) Sloping roof	Rural	228	0.06					
	Total	304	0.08	M	L			
b) Flat roof	Urban	153	0.04					*Source: Conque of
	Rural	456	0.11					Housing COL 1001
	Total	609	0.15	M	L			Housing, GOI, 1991
C2. Wood Wall	Urban	653	0.16					
(all roofs)	Rural	1,287	0.32					
	Total	1,940	0.49	M	L			
C3 Ekra Wall	Urban	1	0.00					
(all roofs)	Rural	19	0.00					Ref: Vulnerability
	Total	20	0.01					Atlas of India 1997
Total Category - C		2,873	0.72	M	L			prepared by Expert
CATEGORY – X	Urban	111	0.03					Group, MOUA&E.
X1-GI and other Metal	Rural	385	0.10					GOI, and pub. by
Sheets (all roofs)	Total	496	0.12	M	VL			Building Materials &
X2 Bamboo. Thatch	Urban	238	0.06					Technology
Grass, Leaves etc.	Rural	6,120	1.54			[Promotion Council
(all roofs)	Total	6,358	1.60	M	VL			(BMTPC)
Total – Category – X		6.854	1.72	M	VL			
GRAND TOTAL	1	397.728	100			1		1

19

LOSSES IN HYPOTHETICAL EARTHQUAKE

TABLE 6 - LOSSES IN MAGNITUDE 8.0 HYPOTHETICAL EARTHQUAKE IF
OCCURRED AGAIN IN KANGRA, HIMACHAL PRADESH IN 1991
(Total housing units in the affected area = 1815,858)

S.No. Item		Scenario if a are <u>without</u> c resist:	ll buildings earthquake ance	Scenario if all buildings are <u>with</u> earthquake resistance	
		Physical Damage	Loss in Rs* (million)	Physical Damage	Loss in Rs. (million)
1.	Loss of Lives	65000	6500	12000	1200
2.	Total collapse of buildings G5	136339	9540	8298	580
3.	Destroyed buildings, G4	263356	18430	94997	6650
2+3	Buildings to rebuild.	399695	27970	103295	7230
4.	Heavily damaged buildings, G3 (to repair & retrofit)	915602	12820	312382	4370
5.	Moderately damaged building. G2 (to repair & retrofit)	357510	3750	648040	6800
6.	Total losses		51040	······································	19600
*Losse	s estimated in 1997 at 1997 costs	(Source: A.S. Ar	va. 12WCEE.	Paner No. 2824.	2000 (Ref. A

BENEFIT/COST OF SEISMIC RESISTANCE

(Hypothetical Repeat EQ of 1905 in H.P.)

	Case (a)	Case (b)	Case (c)
Seism. Resist. Cost	Nil	635 crores	1525 crores
Life Loss	65000	12000	12000
Physical Losses	5104 crore	1960 crore	1960 crores
Net saving as	-	2509 ``	1619 ``
Compared to (a)			
Indirect Losses &	A	20-25% of A	20 - 25% of A
Trauma			

Case (a) – Existing situation of buildings.

Case (b) – If all buildings were earthquake resistant initially. Case (c) – If all buildings are retrofitted now.

EXTRA COST IN PROVIDING SEISMIC RESISTANCE

Building	Masonry	RCC framed Buildings
in	in Cement Mortar	4-8 storeyed
Zone III	1.5 - 2%	2.6 - 3.2 %
Zone IV	3 - 4 %	3.2 - 4.0 %
Zone V	5-6%	5.0 - 6.0 %

GOVERNMENT OF INDIA INITIATIVES

EARTHQUAKE RISK MITIGATION PROJECT

- To cover **229** districts in **21** States in seismic zones IV and V
 - Putting techno-legal regime in place.
 - Capacity building/training of engineers/masons etc.
 - Awareness through technology demonstration.
 - Retrofitting of life line buildings and public utilities.
 - Formulation of preparedness and response plans.

TECHNO-LEGAL REGIME AND CAPACITY BUILDING FOR ITS COMPLIANCE

- <u>Working with States in seismic zones III, IV</u> and V
- Model Building Bye-laws and Development Control Regulations
- Awareness generation meetings/ workshops /visits to educational institutions
- Assistance to States for training of engineers / architects / masons

TECHNO-LEGAL REGIME AND CAPACITY BUILDING FOR COMPLIANCE [CONTD.]

- National Programme for Capacity Building of Architects in earthquake risk management- assistance to States to train 10,000 architects.
- National Programme for Capacity Building of Masons in Earthquake Risk Mitigation—assistance to States to train 30,000 masons.

EARTHQUAKE SAFETY OF LIFELINE BUILDINGS AND CRITICAL INFRASTRUCTURE

• Steps initiated for examination of the structural safety of life-line buildings from the seismic point of view. (airports and control towers, hospitals in seismic zones, railway stations/bridges in seismic zones), Power for safety of power generation and transmission systems; Telecommunication for safety of telephone exchanges and lines

CONCLUSION

- Carry out the engineering, architecture and planning measures
 - Land use zoning.
 - Planning of habitat,
 - Implementation of building codes in all new constructions, and
 - seismic retrofitting of existing buildings and infrastructure.
- Create the supportive structure of
 - public awareness,
 - education and training
 - research and development about the safety from earthquake hazard.

• Appropriate policy, financial and institutional support at national and state levels are being provided for putting this strategy into a workable action plan.

Thank you for your attention.