Panel Discussion
From research to implementation: making retrofit a reality

15 January, 2005
From 3:00 PM – 5:30 PM

Reported by
Masayoshi Nakashima

Kyoto University and
National Institute for Earth Science and Disaster Prevention
“Panel Discussion” focused on addressing the construction problems of communities throughout the world with limited or non-engineered buildings in seismic areas. These problems have contributed to extensive loss of lives in the past and represent great threats for the future, especially in densely populated regions.
Resolutions [1/3]

1) Raising the awareness of the international community about the extent of the technical construction problems and the socio-economical realities in seismically vulnerable regions

2) Developing feasible solutions to the construction problems and the necessary educational and training programs

3) Establishing collaboration mechanisms between local and international parties, including practitioners, researchers, social scientists, economists, and local authorities
Resolutions [1/3]

1) Raising the awareness of the international community about the extent of the technical construction problems and the socio-economical realities in seismically vulnerable regions
 a) Select one or more densely populated mega cities with high seismic risk for the development of integrated multidisciplinary demonstration projects.
 b) Create a major campaign to inform owners of the underlying seismic vulnerability of their buildings with the direct involvement of advertising and marketing specialists.
 c) Create an international entity like the World Health Organization for Buildings (perhaps within existing UN entities.)
Resolutions [2/3]

2) Developing feasible solutions to the construction problems and the necessary educational and training programs

a) Convert comprehensive documents of retrofit techniques into simple and low-cost guidelines for the end-users considering local conditions in terms of materials and construction techniques dictated by socio-economical realities.

b) Establish an international initiative on the retrofitting of school buildings which have common features all over the world to effectively introduce communities to mitigating seismic risk.
 Compatibility to Local Practice
 Use of Available Materials

Seismic Feature – Installation of Cane Reinforcement
Usefulness to End-Users

Tutorial on Construction of New Adobe Houses
Retrofit of School Buildings

Taiwan

Algeria
2) Developing feasible solutions to the construction problems and the necessary educational and training programs

c) Establish proper mechanisms for financing both the development and the implementation of the solutions. Initiate and encourage efforts to invest and act before earthquakes as preemptive action rather than just post-disaster relief.

d) Establish the proper measures to assure the implementation of code provisions in regions of pre-disaster investments.
2) Developing feasible solutions to the construction problems and the necessary educational and training programs

e) Develop educational and training programs targeting the local communities, including professionals, contractors, construction workers, government officials, and the public with the objectives of encouraging end-users to appreciate and implement seismic mitigation actions.
Ultimate Quality depends on them!
3) Establishing collaboration mechanisms between local and international parties, including practitioners, researchers, social scientists, economists, and local authorities

a) Encourage the international exchange of information, including to organize and support specialty and multidisciplinary conferences on all aspects of the problem regularly.

b) Support existing international organizations such as “Engineers without Boarders” for implementations of sample demonstration projects.
3) Establishing collaboration mechanisms between local and international parties, including practitioners, researchers, social scientists, economists, and local authorities

c) Support the international collaboration for full-scale experiments using E-Defense, NEES, and other international facilities to validate the proposed solutions and to create effective audio-visual demonstrations for educating and convincing the end-users of the importance of seismically resistant construction.
Advantage of large testing facilities for collaboration, education, and training on seismic upgrade of non- and little-engineered buildings.

NEES (USA)
Network for Earthquake Engineering Simulation

E-Defense (Japan)
World Largest Shaking Table
3) Establishing collaboration mechanisms between local and international parties, including practitioners, researchers, social scientists, economists, and local authorities

d) Expand and enhance the EERI/IAEE “World Housing Encyclopedia” into an accessible global repository for information on practical seismic safety measures including all recommendations presented in these resolutions.
Project launched in January 2000
Over 180 participants from 50 countries
Over 100 contributions describing housing construction posted on the project’s web site