Disaster by Tsunami and its countermeasures in Japanese fishing villages

- 1. Middle Japanese sea earthquake 1983
- 2. South west offshore of Hokkaido earthquake 1993

2005 21th January
Future University-Hakodate
Akira Nagano

Fishing ports, villages, grounds in Japan

- Coast line length 33,468km
- Fishing villages along coast 4,792
- Fishing ports 2,972
- Fishing grounds
- Fishing boats 254,768

 These suffer from convulsion of nature in Japan, especially Tsunami.

Characteristics of climate in Japan

Middle Japan sea earthquake 1983

- 1 9 8 3 26th May Noon, magnitude 7.7
- Dead 104, damaged house 5,346, amount of fishing port damage \3,073million
- Damage ship 2,651(\2,064million),fishing implement (\3,011million)

Height of Tsunami going up

Hachimori town(Akita pref.)

Rocky coast with terrace

Attack by tsunami (Hatake fishing port Akita pref.)

Hachimori fishing port

After tsunami attack

Different of tsunami height with embankment

There are three embankment types at hachimori sand coast.

The fishing villages that suffered heavy damage were following topographical features

Aonae fishing port in Hokkaido was damaged by Middle Japan sea earthquake1983

(Aonae fishing port that would suffer damage again 1993 hokkaido south west offshore earthquake)

Fishing boats were pushed up to quay

South west offshore of Hokkaido earthquake 1993

- 1 9 9 3 12th July 22o'clock magnitude 7.8
- Dead 201, damaged house 21,160, amount of fishing port damage \26,341million
- Damage ship 1,300(\1,323million),fishing implement (\13,467million)

Tsunami height and attack time after earthquake, and level of damage

Flood area and tsunami direction Tsunami from three directions

Amplify ratio the lower, port basin area the larger

Figure 4 Area within the port and tsunami runup height

Tsunami runup height within the port and fishing boat damage rate

Water flow pressure = Tsunami height x Runup velocity of tsunamis

Relationship between the water flow pressure and the damage rate of houses

Photo after tsunami

Aonae fishing port

Kamiura fishing port

Photo after tsunami

Ota fishing port

Basic Concept of a Disaster Restoration Plan at Aonae fishing village

- Construction of a fishing port and village resistant to disasters
- 2. Regional revitalization centering on the fishery industry
- 3. Construction a port and village with a high level amenities

Construction of a fishing village resistant to disasters

- 1. Coutermeasures against earthquake and tsunami disasters (bank height H11.8m,H6.0m, ground H6.0m)
- 2. Coutermeasures against fire
- Evacuation system(arrival from anyplace to 6.0m height within 3minities)
- Information system on disaster prevention(At seismic intensity 4, simultaneously and automatically The alarm for tsunami are announced)
- 5. Safe keeping of fishing boats

Framework of recover Aonae fishing village and port

Figure 7 Countermeasures against tsunamis and houses

Aonae recover master plan

Photo after recover at Aonae

Artificial ground

fill mound and high ground

Photo after recover at Aonae

Fullfill mound and seawall Cooperative shed

Artificial ground

Countermeasures of tsunami at fishing villages

- 1. Fishing ports and breakwater facility is effective for tsunami
- 2. Topography weakness is recovered by fishing port facility or another
- 3. Improvement Hazard map
- 4. Alarm instrument
- 5. Evacuation road